File size: 6,708 Bytes
da02d00
 
 
 
 
 
 
 
 
767f673
 
4a26b36
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea84e2
813718f
 
4a26b36
767f673
 
4a26b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea84e2
813718f
4a26b36
813718f
767f673
4a26b36
813718f
 
da02d00
f287dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9e70e8
f287dd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
tags: []
---

## Model Details

### Model Description

Dataset:  [GreenNode/GreenNode-Table-Markdown-Retrieval](https://huggingface.co/datasets/GreenNode/GreenNode-Table-Markdown-Retrieval-VN)

| Model Name                             | MAP@5 ↑ | MRR@5 ↑ | NDCG@5 ↑ | Recall@5 ↑ | Mean ↑ |
|----------------------------------------|---------|---------|----------|------------|--------|
| **Multilingual Embedding models**      |         |         |          |            |        |
| me5_small                              | 33.75   | 33.75   | 35.68    | 41.49      | 36.17  |
| me5_large                              | 38.16   | 38.16   | 40.27    | 46.62      | 40.80  |
| M3-Embedding                           | 36.52   | 36.52   | 38.60    | 44.84      | 39.12  |
| OpenAI-embedding-v3                    | 30.61   | 30.61   | 32.57    | 38.46      | 33.06  |
| **Vietnamese Embedding models (Prior Work)** |   |         |          |            |        |
| halong-embedding                       | 32.15   | 32.15   | 34.13    | 40.09      | 34.63  |
| sup-SimCSE-VietNamese-phobert_base     | 10.90   | 10.90   | 12.03    | 15.41      | 12.31  |
| vietnamese-bi-encoder                  | 13.61   | 13.61   | 14.63    | 17.68      | 14.89  |
| **GreenNode-Embedding**               |         |         |          |            |        |
| M3-GN-VN                               | 41.85 | 41.85 | 44.15  | 57.05    | 46.23|
| M3-GN-VN-Mixed                         | 42.08   | 42.08   | 44.33    | 51.06      | 44.89  |
| **Ours – Multi-vector embedding**   |         |         |          |            |        |
| Vintern-Embedding-1B                      | 57.01   | 57.01   | 59.17    | 65.65      | 59.71  |
				

Dataset:  [GreenNode/zalo-ai-legal-text-retrieval-vn](https://huggingface.co/datasets/GreenNode/zalo-ai-legal-text-retrieval-vn)


| Model Name                             | MAP@5 ↑ | MRR@5 ↑ | NDCG@5 ↑ | Recall@5 ↑ | Mean ↑ |
|----------------------------------------|---------|---------|----------|------------|--------|
| **Multilingual Embedding models**      |         |         |          |            |        |
| me5_small                              | 54.68   | 54.37   | 58.32    | 69.16      | 59.13  |
| me5_large                              | 60.14   | 59.62   | 64.17    | 76.02      | 64.99  |
| M3-Embedding                           | 69.34  |  68.96  |  73.70   |  86.68     |  74.67 |
| OpenAI-embedding-v3                    | 38.68   | 38.80   | 41.53    | 49.94      | 41.74  |
| **Vietnamese Embedding models (Prior Work)** |         |         |          |            |        |
| halong-embedding                       | 52.57   | 52.28   | 56.64    | 68.72      | 57.55  |
| sup-SimCSE-VietNamese-phobert_base     | 25.15   | 25.07   | 27.81    | 35.79      | 28.46  |
| vietnamese-bi-encoder                  | 54.88   | 54.47   | 59.10    | 79.51      | 61.99  |
| **GreenNode-Embedding**                |         |         |          |            |        |
| M3-GN-VN                               | 65.03   | 64.80   | 69.19    | 81.66      | 70.17  |
| M3-GN-VN-Mixed                         | 69.75   | 69.28   | 74.01    | 86.74      | 74.95  |
| **Ours – Multi-vector embedding**   |         |         |          |            |        |
| Vintern-Embedding-1B                   | 68.90   | 69.06   | 72.32    | 82.29      | 73.14  |

				
Dataset: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/BtTD8aky0w4SDZUvrP-XF.png)

| Model                                          | Model_Size | Average_Score | ArxivQA | DocVQA | InfoVQA | Artificial Intelligence | Energy | Government | Healthcare Industry | TAT-DQA |
|-----------------------------------------------|------------|---------------|---------|--------|---------|-------------------------|--------|------------|----------------------|---------|
| royokong/e5-v                                 | 8.3B       | 62.88         | 48.3    | 34.7   | 69.2    | 78.9                    | 78.1   | 82.2       | 82.3                 | 29.3    |
| TIGER-Lab/VLM2Vec-Full                        | 4.2B       | 51.16         | 42.8    | 26.7   | 66.7    | 53.5                    | 63.5   | 64         | 70.7                 | 21.4    |
| nvidia/llama-nemoretriever-colembed-3b-v1     | 4.4B       | 90.42         | 88.4    | 66.2   | 94.9    | 99.6                    | 96.6   | 97.8       | 99.3                 | 80.6    |
| nvidia/llama-nemoretriever-colembed-1b-v1     | 2.4B       | 89.8          | 87.6    | 64.5   | 93.6    | 100                     | 96.6   | 96.7       | 99.6                 | 79.8    |
| jinaai/jina-embeddings-v4                     | 3.8B       | 89.38         | 88.5    | 60.1   | 93.8    | 99.3                    | 97.3   | 96.6       | 99.1                 | 80.3    |
| nomic-ai/colnomic-embed-multimodal-3b         | 3B       | 89.25         | 88.1    | 61.3   | 92.8    | 96.3                    | 97.4   | 96.6       | 98.3                 | 83.2    |
| nomic-ai/colnomic-embed-multimodal-7b         | 7B       | 89.00         | 88.3    | 60.1   | 92.2    | 98.8                    | 96.3   | 95.9       | 99.3                 | 81.1    |
| vidore/colqwen2.5-v0.2                        | 3B       | 89.58         | 88.9    | 63.6   | 92.5    | 99.6                    | 96.1   | 95.8       | 98                   | 82.1    |
| vidore/colqwen2-v1.0                          | 2.2B       | 89.18         | 88      | 61.5   | 92.5    | 99                      | 95.9   | 95.5       | 98.8                 | 82.2    |
| ibm-granite/granite-vision-3.3-2b-embedding   | 3B       | 85.98         | 84.2    | 54.6   | 89.7    | 98.9                    | 96.3   | 97.3       | 98.9                 | 67.9    |
| vidore/colpali-v1.3                           | 3B       | 85.44         | 83.3    | 58.4   | 85.5    | 97.4                    | 94.6   | 96.1       | 97.4                 | 70.8    |
| vidore/colpali-v1.2                           | 3B       | 83.16         | 77.8    | 56.6   | 82.2    | 97.5                    | 93.8   | 94.4       | 94.9                 | 68.1    |
| ColVintern-1B                                 | 0.9B        | 78.8          | 71.6    | 48.3   | 84.6    | 92.9                    | 88.7   | 89.4       | 95.2                 | 59.6    |
| Vintern-Embedding-1B                             | 0.9B        | 82.85         | 75.37   | 51.79  | 86.2    | 97.52                   | 93.19  | 93.97      | 97.09                | 67.72   |