import math from typing import ClassVar, List, Optional, Tuple, Union import torch from PIL import Image from transformers import BatchFeature from .processing_utils import BaseVisualRetrieverProcessor import numpy as np import torch import torchvision.transforms as T from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from .conversation import get_conv_template from transformers import BatchFeature, ProcessorMixin def get_torch_device(device: str = "auto") -> str: """ Returns the device (string) to be used by PyTorch. `device` arg defaults to "auto" which will use: - "cuda:0" if available - else "mps" if available - else "cpu". """ if device == "auto": if torch.cuda.is_available(): device = "cuda:0" elif torch.backends.mps.is_available(): # for Apple Silicon device = "mps" else: device = "cpu" return device class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin): """ Processor for ColInternVL2. """ attributes = [ "tokenizer"] image_processor_class = "InternVL2ImageProcessor" tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") def __init__(self, tokenizer, **kwargs): self.template = "Hermes-2" self.num_image_token = 256 # self.max_num = 6 self.max_num = 4 if isinstance(tokenizer, str): self.tokenizer = AutoTokenizer.from_pretrained(tokenizer, trust_remote_code=True, use_fast=False) else: self.tokenizer = tokenizer self.tokenizer.padding_side = 'left' self.IMAGENET_MEAN = (0.485, 0.456, 0.406) self.IMAGENET_STD = (0.229, 0.224, 0.225) self.IMG_CONTEXT_TOKEN='' self.IMG_START_TOKEN='' self.IMG_END_TOKEN='' self.img_context_token_id = self.tokenizer.convert_tokens_to_ids(self.IMG_CONTEXT_TOKEN) # self.system_message = '你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。' self.system_message = '' super().__init__(tokenizer) # def from_pretrained(pretrained_model_name_or_path, template="Hermes-2", **kwargs): # return ColInternVL2Processor(pretrained_model_name_or_path, template=template, **kwargs) def build_transform(self, input_size): MEAN, STD = self.IMAGENET_MEAN, self.IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = self.find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(self, image, input_size=448, max_num=12): transform = self.build_transform(input_size=input_size) images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=False, max_num=max_num) ############################################################################################################## pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def process_images( self, images: List[Image.Image], max_length: int = 1100, padding="longest" ) -> BatchFeature: """ Process images for InternVl2. """ pixel_values = [ self.load_image(image, max_num=self.max_num) for image in images] num_patches_list = [ pixel_.size(0) for pixel_ in pixel_values] image_flags = [ torch.tensor([1] * pixel_.shape[0], dtype=torch.long) for pixel_ in pixel_values ] queries = [] for idx, num_patches in enumerate(num_patches_list): question = "Image: \nDescribe the image." template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() image_tokens = self.IMG_START_TOKEN + self.IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + self.IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) model_inputs = self.tokenizer(queries, return_tensors='pt', max_length=max_length, padding=padding, truncation=True) input_ids = model_inputs['input_ids'] #.to(self.device) attention_mask = model_inputs['attention_mask'] #.to(self.device) pixel_values = torch.cat(pixel_values) batch_doc = BatchFeature({ "pixel_values" : pixel_values, "input_ids" : input_ids, "attention_mask" : attention_mask, # "image_flags" : image_flags }) return batch_doc def process_docs( self, docs: List[str], max_length: int = 1100, suffix: Optional[str] = None, padding="longest" ) -> BatchFeature: """ Process documents for InternVL2. """ texts_doc: List[str] = [] for doc in docs: doc = f"Document: {doc}\nDescribe the document." template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], doc) template.append_message(template.roles[1], None) doc = template.get_prompt() texts_doc.append(doc) model_inputs = self.tokenizer(texts_doc, return_tensors='pt', max_length=max_length, padding=padding, truncation=True) input_ids = model_inputs['input_ids'] # .to(self.device) attention_mask = model_inputs['attention_mask'] # .to(self.device) batch_doc = BatchFeature({ "pixel_values": None, "input_ids": input_ids, "attention_mask": attention_mask, }) return batch_doc def process_queries( self, queries: List[str], max_length: int = 100, suffix: Optional[str] = None, ) -> BatchFeature: """ Process queries for InternVl2. """ texts_query: List[str] = [] for query in queries: query = f"Query: {query}" template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], query) template.append_message(template.roles[1], None) query = template.get_prompt() texts_query.append(query) model_inputs = self.tokenizer(texts_query, return_tensors='pt', max_length=max_length, padding="longest", truncation=True) input_ids = model_inputs['input_ids'] #.to(self.device) attention_mask = model_inputs['attention_mask'] #.to(self.device) batch_query = BatchFeature({ "pixel_values" : None, "input_ids" : input_ids, "attention_mask" : attention_mask, }) return batch_query def score( self, qs: List[torch.Tensor], ps: List[torch.Tensor], device: Optional[Union[str, torch.device]] = None, **kwargs, ) -> torch.Tensor: """ Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. """ return self.score_multi_vector(qs, ps, device=device, **kwargs) def get_n_patches( self, image_size: Tuple[int, int], patch_size: int, ) -> Tuple[int, int]: raise NotImplementedError("This method is not implemented for ColInternVL2.") def score_multi_vector( self, qs: List[torch.Tensor], ps: List[torch.Tensor], batch_size: int = 128, device: Optional[Union[str, torch.device]] = None, ) -> torch.Tensor: """ Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. """ device = device or get_torch_device("auto") if len(qs) == 0: raise ValueError("No queries provided") if len(ps) == 0: raise ValueError("No passages provided") scores_list: List[torch.Tensor] = [] for i in range(0, len(qs), batch_size): scores_batch = [] qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).float().to( device ) for j in range(0, len(ps), batch_size): ps_batch = torch.nn.utils.rnn.pad_sequence( ps[j : j + batch_size], batch_first=True, padding_value=0 ).float().to(device) scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2)) scores_batch = torch.cat(scores_batch, dim=1).cpu() scores_list.append(scores_batch) scores = torch.cat(scores_list, dim=0) assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" scores = scores.to(torch.float32) return scores