--- license: apache-2.0 datasets: - AIDC-AI/Ovis-dataset library_name: transformers tags: - MLLM pipeline_tag: image-text-to-text language: - en - zh --- # Ovis2.5-2B

technical report code demo models

## Introduction We are pleased to announce the release of **Ovis2.5**, the successor to Ovis2, designed for native-resolution visual perception and enhanced multimodal reasoning. It integrates a native-resolution vision transformer (NaViT) that processes images at their original, variable resolutions, eliminating the need for fixed-resolution tiling and preserving both fine details and global layout—crucial for visually dense content such as charts and diagrams. To strengthen reasoning, Ovis2.5 is trained not only on linear chain-of-thought (CoT) but also on reflective reasoning, including self-checking and revision. This advanced capability is available at inference as an optional *thinking mode*, enabling users to trade latency for higher accuracy on complex inputs. Building on these advances, **Ovis2.5-9B** achieves an average score of 78.3 on the OpenCompass multimodal evaluation suite (SOTA among open-source MLLMs under 40B parameters), while the lightweight **Ovis2.5-2B** scores 73.9, continuing the “small model, big performance” philosophy for resource-constrained scenarios.
**Key Features** * **Native-Resolution Perception** — NaViT vision encoder preserves fine details and global structure without lossy tiling. * **Deep-Reasoning Capability** — Optional *thinking mode* for self-checking and revision beyond linear CoT. *Thinking budget* supported. * **Chart & Document OCR** — State-of-the-art at its scale for complex chart analysis, document understanding (including tables and forms), and OCR. * **Broad Task Coverage** — Demonstrates leading performance on image reasoning, video understanding, and grounding benchmarks, showcasing strong general multimodal capability.
## Quick Inference Below is a simple example demonstrating how to run Ovis2.5 with a single image input. First, install the required dependencies: ```bash pip install torch==2.4.0 transformers==4.51.3 numpy==1.25.0 pillow==10.3.0 moviepy==1.0.3 pip install flash-attn==2.7.0.post2 --no-build-isolation ``` Then, run the following code. The thinking and thinking budget logic can be applied in the same way for multi-image, video and pure text scenarios. ```python import torch import requests from PIL import Image from transformers import AutoModelForCausalLM MODEL_PATH = "AIDC-AI/Ovis2.5-9B" # Controls whether to enable thinking mode. enable_thinking = True # NOTE: The thinking budget mechanism is effective only when # enable_thinking and enable_thinking_budget are both True. # Setting enable_thinking=True and enable_thinking_budget=False # enables thinking without budget. In such case the model might # spend a lot of tokens in the thinking phase and could be slow. enable_thinking_budget = True # max_new_tokens is the upper limit for thinking and non-thinking tokens combined. # MUST ensure that max_new_tokens > thinking_budget + 25 # when using the thinking budget mechanism. max_new_tokens = 3072 thinking_budget = 2048 # The implementation of thinking budget involves two-phase generation, # which is incompatible with the official transformers TextIteratorStreamer. # Hence we modified the streaming class. Could comment this part out if # not using thinking budget. See the commented lines below that involve # "streamer" for usage. from transformers import TextIteratorStreamer class MyTextIteratorStreamer(TextIteratorStreamer): def manual_end(self): """Flushes any remaining cache and prints a newline to stdout.""" # Flush the cache, if it exists if len(self.token_cache) > 0: text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) printable_text = text[self.print_len :] self.token_cache = [] self.print_len = 0 else: printable_text = "" self.next_tokens_are_prompt = True self.on_finalized_text(printable_text, stream_end=True) def end(self): pass model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, trust_remote_code=True ).cuda() # streamer = MyTextIteratorStreamer(model.text_tokenizer, skip_prompt=True, skip_special_tokens=True) messages = [{ "role": "user", "content": [ {"type": "image", "image": Image.open(requests.get("https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png", stream=True).raw)}, {"type": "text", "text": "Calculate the sum of the numbers in the middle box in figure (c)."}, ], }] input_ids, pixel_values, grid_thws = model.preprocess_inputs( messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking ) input_ids = input_ids.cuda() pixel_values = pixel_values.cuda() if pixel_values is not None else None grid_thws = grid_thws.cuda() if grid_thws is not None else None outputs = model.generate( inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, enable_thinking=enable_thinking, enable_thinking_budget=enable_thinking_budget, max_new_tokens=max_new_tokens, thinking_budget=thinking_budget, # streamer=streamer ) response = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
Example: Multi-image Demonstrates how to run inference with multiple images and a related question. ```python # Multi-image inference multi_image_files = [ "/path/to/image_1.jpg", "/path/to/image_2.jpg", "/path/to/image_3.jpg", ] content = [{"type": "image", "image": Image.open(p).convert("RGB")} for p in multi_image_files] content.append({"type": "text", "text": "Describe the images."}) messages = [{"role": "user", "content": content}] input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896) input_ids = input_ids.cuda() pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None grid_thws = grid_thws.cuda() if grid_thws is not None else None with torch.no_grad(): outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, max_new_tokens=1024, do_sample=True, eos_token_id=model.text_tokenizer.eos_token_id, pad_token_id=model.text_tokenizer.pad_token_id) print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
Example: Video Demonstrates how to run inference on a video by sampling multiple frames and asking the model to describe the content. ```python # Video inference from moviepy.editor import VideoFileClip # pip install moviepy==1.0.3 video_file = "/path/to/video_1.mp4" num_frames = 8 with VideoFileClip(video_file) as clip: total_frames = int(clip.fps * clip.duration) indices = [int(i * total_frames / num_frames) for i in range(num_frames)] frames = [Image.fromarray(clip.get_frame(t)) for t in (idx / clip.fps for idx in indices)] messages = [{"role": "user", "content": [ {"type": "video", "video": frames}, {"type": "text", "text": "Describe this video in detail."}, ]}] input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896) input_ids = input_ids.cuda() pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None grid_thws = grid_thws.cuda() if grid_thws is not None else None with torch.no_grad(): outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, max_new_tokens=1024, do_sample=True, eos_token_id=model.text_tokenizer.eos_token_id, pad_token_id=model.text_tokenizer.pad_token_id) print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
Example: Text-only Demonstrates how to run inference using only text input without any images or videos. ```python # Text-only inference messages = [{"role": "user", "content": "Hi, please introduce Yellow Mountain."}] input_ids, _, _ = model.preprocess_inputs(messages=messages, add_generation_prompt=True) input_ids = input_ids.cuda() with torch.no_grad(): outputs = model.generate(inputs=input_ids, max_new_tokens=1024, do_sample=True, eos_token_id=model.text_tokenizer.eos_token_id, pad_token_id=model.text_tokenizer.pad_token_id) print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
To enable grounding, end your prompt with `Please provide the bounding box coordinates.` (for boxes) or `Please provide the point coordinates.` (for points). To target a specific object, wrap its description in `` tags, e.g.: ```text Find the red apple in the image. Please provide the bounding box coordinates. ``` Coordinates are normalized to `[0,1)` with the origin `(0,0)` at the top-left corner of the image. * Point: `(x,y)` * Bounding box: `(x1,y1),(x2,y2)` where `(x1,y1)` is top-left, `(x2,y2)` is bottom-right. * Multiple results can be listed in square brackets: `[(...),(...) ]` Example: ```text The image features a serene scene with three birds[ (0.401,0.526),(0.430,0.557), (0.489,0.494),(0.516,0.526), (0.296,0.529),(0.324,0.576) ] flying in formation against a clear blue sky. ``` ## Model Zoo | Ovis MLLMs | ViT | LLM | Model Weights | Demo | |:-----------|:-----------------------:|:---------------------:|:-------------------------------------------------------:|:--------------------------------------------------------:| | Ovis2.5-2B | siglip2-so400m-patch16-512 | Qwen3-1.7B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-2B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B) | | Ovis2.5-9B | siglip2-so400m-patch16-512 | Qwen3-8B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-9B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-9B) | ## Performance We evaluate Ovis2.5 using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), as employed in the OpenCompass multimodal and reasoning evaluation suite. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/zYtwH4Yw6q6591en_FVX-.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/zWbsInYCHZYEPlY75xrRd.png) ## Citation If you find Ovis useful, please consider citing the paper ``` @article{lu2024ovis, title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model}, author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye}, year={2024}, journal={arXiv:2405.20797} } ``` ## License This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0). ## Disclaimer We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.