File size: 7,354 Bytes
77bb325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# ─────────────────────────────────────────────────────────────
# ░ Dual Shunt Adapter Configuration File
# - Adapter ID: 002
# - Supports flan-t5-base ↔ clip-vit-large-patch14
# - Projection stack + dropout + normalization
# - Surgeworthy training baseline adapter
# ─────────────────────────────────────────────────────────────
ADAPTER_CONFIG = {
# Model Integration IDs
"adapter_id": "002",
"name": "TwoStreamShuntAdapter",
# Backbone Model Dimensions
"t5": {
"model": "google/flan-t5-base",
"hidden_size": 768,
},
"clip": {
"model": "openai/clip-vit-large-patch14",
"hidden_size": 768,
},
# Adapter Dimensions
"bottleneck": 384,
"heads": 12,
# Guidance Parameters
"tau_init": 0.1,
"max_guidance": 10.0,
# Projection Configuration
"proj_layers": 2, # number of linear+GELU layers
"layer_norm": True, # apply LayerNorm before stack
"dropout": 0.1,
"use_dropout": True,
"use_proj_stack": True,
# Runtime Safeguards
"assert_input_dims": True,
# Routing Logic
"routing": {
"type": "cross_attention",
"enable_causal_mask": False,
"bidirectional": True
},
# Version & Metadata
"version": "v0.3.1",
"description": "Upgraded FLAN-T5 ↔ CLIP-L token shunt with projection stack, dropout, and field-consistent architecture."
}
import torch
import torch.nn as nn
import torch.nn.functional as F
# ─── Residual Pocket Block ───────────────────────────────────
class BottleneckResBlock(nn.Module):
def __init__(self, dim, kernel=3, dropout=0.1):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.conv = nn.Conv1d(dim, dim, kernel_size=kernel, padding=kernel // 2, groups=1)
self.proj = nn.Sequential(
nn.Linear(dim, dim * 2),
nn.GELU(),
nn.Linear(dim * 2, dim),
nn.Dropout(dropout)
)
def forward(self, x):
residual = x
x = self.norm(x)
x = x.transpose(1, 2)
x = self.conv(x).transpose(1, 2)
return residual + self.proj(x)
# ─── Two Stream Shunt Adapter ──────────────────────────────────────
class TwoStreamShuntAdapter(nn.Module):
def __init__(self, config: dict):
super().__init__()
self.config = config
self.t5_dim = config["t5"]["hidden_size"]
self.clip_dim = config["clip"]["hidden_size"]
self.bneck = config["bottleneck"]
self.heads = config["heads"]
self.tau_init = config["tau_init"]
self.max_guidance = config["max_guidance"]
use_norm = config.get("layer_norm", True)
use_do = config.get("use_dropout", True)
do_p = config.get("dropout", 0.1)
proj_depth = config.get("proj_layers", 2)
def build_projection(input_dim, output_dim):
layers = []
last_dim = input_dim
if use_norm:
layers.append(nn.LayerNorm(last_dim))
for i in range(proj_depth):
next_dim = self.bneck * (2 if i == 0 and proj_depth > 1 else 1)
layers.append(nn.Linear(last_dim, next_dim))
layers.append(nn.GELU())
if use_do:
layers.append(nn.Dropout(do_p))
last_dim = next_dim
layers.append(nn.Linear(last_dim, output_dim))
return nn.Sequential(*layers)
# Projections
self.proj_t5 = build_projection(self.t5_dim, self.bneck)
self.proj_clip = build_projection(self.clip_dim, self.bneck)
# Attention
self.cross_t2c = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
self.cross_c2t = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
self.tau = nn.Parameter(torch.full((self.heads, 1, 1), self.tau_init))
# Residual Pocket
self.pocket_blocks = nn.Sequential(
BottleneckResBlock(self.bneck, dropout=do_p),
BottleneckResBlock(self.bneck, dropout=do_p)
)
# Fuse
self.fuse = nn.Sequential(
nn.LayerNorm(2 * self.bneck),
nn.Linear(2 * self.bneck, self.bneck * 2),
nn.GELU(),
nn.Linear(self.bneck * 2, self.bneck)
)
# Output Projections
self.anchor_proj = build_projection(self.bneck, self.clip_dim)
self.delta_proj = build_projection(self.bneck, self.clip_dim)
self.logsig_proj = build_projection(self.bneck, self.clip_dim)
self.gate_proj = nn.Sequential(
nn.LayerNorm(self.bneck),
nn.Linear(self.bneck, self.bneck),
nn.GELU(),
nn.Linear(self.bneck, 1),
nn.Tanh(),
nn.Sigmoid()
)
self.guidance_proj = nn.Sequential(
nn.LayerNorm(self.bneck),
nn.Linear(self.bneck, 1),
nn.Sigmoid()
)
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor):
if self.config.get("assert_input_dims", True):
assert t5_seq.size(-1) == self.t5_dim
assert clip_seq.size(-1) == self.clip_dim
t5_b = self.proj_t5(t5_seq)
clip_b = self.proj_clip(clip_seq)
t2c, attn_t2c = self.cross_t2c(t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False)
c2t, attn_c2t = self.cross_c2t(clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False)
pocket = self.pocket_blocks(t2c)
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, clip_b.size(1), -1)
h = self.fuse(torch.cat([pocket_mean, c2t], dim=-1))
anchor = self.anchor_proj(h)
delta = self.delta_proj(h) * self.gate_proj(h)
log_sigma = self.logsig_proj(h)
g_tok = self.guidance_proj(h).squeeze(-1)
g_pred = g_tok.mean(1, keepdim=True) * self.max_guidance
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, self.gate_proj(h)
from safetensors.torch import save_file, load_file
def save_safetensors(adapter: nn.Module, path: str, metadata: dict = None):
"""
Save the current adapter state to safetensors format.
All tensors are moved to CPU and saved as float32 for compatibility.
Optional metadata may be embedded (e.g., version, prompt_mode).
"""
state = {k: v.float().cpu() for k, v in adapter.state_dict().items()}
save_file(state, path, metadata=metadata or {})
print(f"✅ Model saved to {path}")
def load_safetensors(adapter: nn.Module, path: str, map_location="cpu"):
"""
Load a safetensors checkpoint into the adapter.
Uses strict key matching. Tensors are loaded to the specified device.
"""
state = load_file(path, device=map_location)
adapter.load_state_dict(state, strict=True)
print(f"✅ Model loaded from {path}")
|