--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora --- # LoRA text2image fine-tuning - AlexeyGHT/fine_tuning_gen These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were fine-tuned on the AlexeyGHT/Iris_gen dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model] !accelerate launch --mixed_precision="no" /content/diffusers/examples/text_to_image/train_text_to_image_lora.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=512 --random_flip \ --train_batch_size=6 \ --num_train_epochs=50 --checkpointing_steps=450 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --output_dir="fine_tuning_gen" \ --validation_prompt "Iris of the eye, web pattern, blue and light blue, beautiful complex pattern" \ --report_to="wandb" \ --push_to_hub