Add library_name and clarify license
Browse filesThis PR adds the `library_name` to the model card metadata. The code examples and mention of a diffusers version suggest compatibility with the Diffusers library, making this a valuable addition for discoverability. The license is also clarified to explicitly state MIT.
README.md
CHANGED
|
@@ -1,16 +1,18 @@
|
|
| 1 |
---
|
| 2 |
-
license: other
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
base_model:
|
| 6 |
- THUDM/CogVideoX-5b
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
tags:
|
| 8 |
- video
|
| 9 |
- video-generation
|
| 10 |
- cogvideox
|
| 11 |
- alibaba
|
| 12 |
-
|
| 13 |
---
|
|
|
|
| 14 |
<div align="center">
|
| 15 |
|
| 16 |
<img src="icon.jpg" width="250"/>
|
|
@@ -56,6 +58,21 @@ Recent advancements in Diffusion Transformer (DiT) have demonstrated remarkable
|
|
| 56 |
- `2024/08/27` We released our v2 paper including appendix.
|
| 57 |
- `2024/07/31` We submitted our paper on arXiv and released our project page.
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
## 🎞️ Showcases
|
| 60 |
|
| 61 |
https://github.com/user-attachments/assets/949d5e99-18c9-49d6-b669-9003ccd44bf1
|
|
@@ -66,6 +83,190 @@ https://github.com/user-attachments/assets/4026c23d-229d-45d7-b5be-6f3eb9e4fd50
|
|
| 66 |
|
| 67 |
All videos are available in this [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/showcases.zip)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
## 🤝 Acknowledgements
|
| 70 |
|
| 71 |
We would like to express our gratitude to the following open-source projects that have been instrumental in the development of our project:
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
base_model:
|
| 3 |
- THUDM/CogVideoX-5b
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
license: mit
|
| 7 |
+
pipeline_tag: text-to-video
|
| 8 |
tags:
|
| 9 |
- video
|
| 10 |
- video-generation
|
| 11 |
- cogvideox
|
| 12 |
- alibaba
|
| 13 |
+
library_name: diffusers
|
| 14 |
---
|
| 15 |
+
|
| 16 |
<div align="center">
|
| 17 |
|
| 18 |
<img src="icon.jpg" width="250"/>
|
|
|
|
| 58 |
- `2024/08/27` We released our v2 paper including appendix.
|
| 59 |
- `2024/07/31` We submitted our paper on arXiv and released our project page.
|
| 60 |
|
| 61 |
+
## 📑 Table of Contents
|
| 62 |
+
|
| 63 |
+
- [🎞️ Showcases](#%EF%B8%8F-showcases)
|
| 64 |
+
- [✅ TODO List](#-todo-list)
|
| 65 |
+
- [🧨 Diffusers verision](#-diffusers-verision)
|
| 66 |
+
- [🐍 Installation](#-installation)
|
| 67 |
+
- [📦 Model Weights](#-model-weights)
|
| 68 |
+
- [🔄 Inference](#-inference)
|
| 69 |
+
- [🖥️ Gradio Demo](#%EF%B8%8F-gradio-demo)
|
| 70 |
+
- [🧠 Training](#-training)
|
| 71 |
+
- [🎯 Troubleshooting](#-troubleshooting)
|
| 72 |
+
- [🤝 Acknowledgements](#-acknowledgements)
|
| 73 |
+
- [📄 Our previous work](#-our-previous-work)
|
| 74 |
+
- [📚 Citation](#-citation)
|
| 75 |
+
|
| 76 |
## 🎞️ Showcases
|
| 77 |
|
| 78 |
https://github.com/user-attachments/assets/949d5e99-18c9-49d6-b669-9003ccd44bf1
|
|
|
|
| 83 |
|
| 84 |
All videos are available in this [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/showcases.zip)
|
| 85 |
|
| 86 |
+
## ✅ TODO List
|
| 87 |
+
|
| 88 |
+
- [x] Release our inference code and model weights
|
| 89 |
+
- [x] Provide a ModelScope Demo
|
| 90 |
+
- [x] Release our training code
|
| 91 |
+
- [x] Release diffusers version and optimize the GPU memory usage
|
| 92 |
+
- [x] Release complete version of Tora
|
| 93 |
+
|
| 94 |
+
## 🧨 Diffusers verision
|
| 95 |
+
|
| 96 |
+
Please refer to [the diffusers version](diffusers-version/README.md) for details.
|
| 97 |
+
|
| 98 |
+
## 🐍 Installation
|
| 99 |
+
|
| 100 |
+
Please make sure your Python version is between 3.10 and 3.12, inclusive of both 3.10 and 3.12.
|
| 101 |
+
|
| 102 |
+
```bash
|
| 103 |
+
# Clone this repository.
|
| 104 |
+
git clone https://github.com/alibaba/Tora.git
|
| 105 |
+
cd Tora
|
| 106 |
+
|
| 107 |
+
# Install Pytorch (we use Pytorch 2.4.0) and torchvision following the official instructions: https://pytorch.org/get-started/previous-versions/. For example:
|
| 108 |
+
conda create -n tora python==3.10
|
| 109 |
+
conda activate tora
|
| 110 |
+
conda install pytorch==2.4.0 torchvision==0.19.0 pytorch-cuda=12.1 -c pytorch -c nvidia
|
| 111 |
+
|
| 112 |
+
# Install requirements
|
| 113 |
+
cd modules/SwissArmyTransformer
|
| 114 |
+
pip install -e .
|
| 115 |
+
cd ../../sat
|
| 116 |
+
pip install -r requirements.txt
|
| 117 |
+
cd ..
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
## 📦 Model Weights
|
| 121 |
+
|
| 122 |
+
### Folder Structure
|
| 123 |
+
|
| 124 |
+
```
|
| 125 |
+
Tora
|
| 126 |
+
└── sat
|
| 127 |
+
└── ckpts
|
| 128 |
+
├── t5-v1_1-xxl
|
| 129 |
+
│ ├── model-00001-of-00002.safetensors
|
| 130 |
+
│ └── ...
|
| 131 |
+
├── vae
|
| 132 |
+
│ └── 3d-vae.pt
|
| 133 |
+
├── tora
|
| 134 |
+
│ ├── i2v
|
| 135 |
+
│ │ └── mp_rank_00_model_states.pt
|
| 136 |
+
│ └── t2v
|
| 137 |
+
│ └── mp_rank_00_model_states.pt
|
| 138 |
+
└── CogVideoX-5b-sat # for training stage 1
|
| 139 |
+
└── mp_rank_00_model_states.pt
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
### Download Links
|
| 143 |
+
|
| 144 |
+
*Note: Downloading the `tora` weights requires following the [CogVideoX License](CogVideoX_LICENSE).* You can choose one of the following options: HuggingFace, ModelScope, or native links.\
|
| 145 |
+
After downloading the model weights, you can put them in the `Tora/sat/ckpts` folder.
|
| 146 |
+
|
| 147 |
+
#### HuggingFace
|
| 148 |
+
|
| 149 |
+
```bash
|
| 150 |
+
# This can be faster
|
| 151 |
+
pip install "huggingface_hub[hf_transfer]"
|
| 152 |
+
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Alibaba-Research-Intelligence-Computing/Tora --local-dir ckpts
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
or
|
| 156 |
+
|
| 157 |
+
```bash
|
| 158 |
+
# use git
|
| 159 |
+
git lfs install
|
| 160 |
+
git clone https://huggingface.co/Alibaba-Research-Intelligence-Computing/Tora
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
#### ModelScope
|
| 164 |
+
|
| 165 |
+
- SDK
|
| 166 |
+
|
| 167 |
+
```bash
|
| 168 |
+
from modelscope import snapshot_download
|
| 169 |
+
model_dir = snapshot_download('xiaoche/Tora')
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
- Git
|
| 173 |
+
|
| 174 |
+
```bash
|
| 175 |
+
git clone https://www.modelscope.cn/xiaoche/Tora.git
|
| 176 |
+
```
|
| 177 |
+
|
| 178 |
+
#### Native
|
| 179 |
+
|
| 180 |
+
- Download the VAE and T5 model following [CogVideo](https://github.com/THUDM/CogVideo/blob/main/sat/README.md#2-download-model-weights):\
|
| 181 |
+
- VAE: https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
|
| 182 |
+
- T5: [text_encoder](https://huggingface.co/THUDM/CogVideoX-2b/tree/main/text_encoder), [tokenizer](https://huggingface.co/THUDM/CogVideoX-2b/tree/main/tokenizer)
|
| 183 |
+
- Tora t2v model weights: [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/mp_rank_00_model_states.pt). Downloading this weight requires following the [CogVideoX License](CogVideoX_LICENSE).
|
| 184 |
+
|
| 185 |
+
## 🔄 Inference
|
| 186 |
+
|
| 187 |
+
### Text to Video
|
| 188 |
+
It requires around 30 GiB GPU memory tested on NVIDIA A100.
|
| 189 |
+
|
| 190 |
+
```bash
|
| 191 |
+
cd sat
|
| 192 |
+
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=$N_GPU sample_video.py --base configs/tora/model/cogvideox_5b_tora.yaml configs/tora/inference_sparse.yaml --load ckpts/tora/t2v --output-dir samples --point_path trajs/coaster.txt --input-file assets/text/t2v/examples.txt
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
You can change the `--input-file` and `--point_path` to your own prompts and trajectory points files. Please note that the trajectory is drawn on a 256x256 canvas.
|
| 196 |
+
|
| 197 |
+
Replace `$N_GPU` with the number of GPUs you want to use.
|
| 198 |
+
|
| 199 |
+
### Image to Video
|
| 200 |
+
|
| 201 |
+
```bash
|
| 202 |
+
cd sat
|
| 203 |
+
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=$N_GPU sample_video.py --base configs/tora/model/cogvideox_5b_tora_i2v.yaml configs/tora/inference_sparse.yaml --load ckpts/tora/i2v --output-dir samples --point_path trajs/sawtooth.txt --input-file assets/text/i2v/examples.txt --img_dir assets/images --image2video
|
| 204 |
+
```
|
| 205 |
+
|
| 206 |
+
The first frame images should be placed in the `--img_dir`. The names of these images should be specified in the corresponding text prompt in `--input-file`, seperated by `@@`.
|
| 207 |
+
|
| 208 |
+
### Recommendations for Text Prompts
|
| 209 |
+
|
| 210 |
+
For text prompts, we highly recommend using GPT-4 to enhance the details. Simple prompts may negatively impact both visual quality and motion control effectiveness.
|
| 211 |
+
|
| 212 |
+
You can refer to the following resources for guidance:
|
| 213 |
+
|
| 214 |
+
- [CogVideoX Documentation](https://github.com/THUDM/CogVideo/blob/main/inference/convert_demo.py)
|
| 215 |
+
- [OpenSora Scripts](https://github.com/hpcaitech/Open-Sora/blob/main/scripts/inference.py)
|
| 216 |
+
|
| 217 |
+
## 🖥️ Gradio Demo
|
| 218 |
+
|
| 219 |
+
Usage:
|
| 220 |
+
|
| 221 |
+
```bash
|
| 222 |
+
cd sat
|
| 223 |
+
python app.py --load ckpts/tora/t2v
|
| 224 |
+
```
|
| 225 |
+
|
| 226 |
+
## 🧠 Training
|
| 227 |
+
|
| 228 |
+
### Data Preparation
|
| 229 |
+
|
| 230 |
+
Following this guide https://github.com/THUDM/CogVideo/blob/main/sat/README.md#preparing-the-dataset, structure the datasets as follows:
|
| 231 |
+
|
| 232 |
+
```
|
| 233 |
+
.
|
| 234 |
+
├── labels
|
| 235 |
+
│ ├── 1.txt
|
| 236 |
+
│ ├── 2.txt
|
| 237 |
+
│ ├── ...
|
| 238 |
+
└── videos
|
| 239 |
+
├── 1.mp4
|
| 240 |
+
├── 2.mp4
|
| 241 |
+
├── ...
|
| 242 |
+
```
|
| 243 |
+
|
| 244 |
+
Training data examples are in `sat/training_examples`
|
| 245 |
+
|
| 246 |
+
### Text to Video
|
| 247 |
+
|
| 248 |
+
It requires around 60 GiB GPU memory tested on NVIDIA A100.
|
| 249 |
+
|
| 250 |
+
Replace `$N_GPU` with the number of GPUs you want to use.
|
| 251 |
+
|
| 252 |
+
- Stage 1
|
| 253 |
+
|
| 254 |
+
```bash
|
| 255 |
+
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=$N_GPU train_video.py --base configs/tora/model/cogvideox_5b_tora.yaml configs/tora/train_dense.yaml --experiment-name "t2v-stage1"
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
- Stage 2
|
| 259 |
+
|
| 260 |
+
```bash
|
| 261 |
+
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=$N_GPU train_video.py --base configs/tora/model/cogvideox_5b_tora.yaml configs/tora/train_sparse.yaml --experiment-name "t2v-stage2"
|
| 262 |
+
```
|
| 263 |
+
|
| 264 |
+
## 🎯 Troubleshooting
|
| 265 |
+
|
| 266 |
+
### 1. ValueError: Non-consecutive added token...
|
| 267 |
+
|
| 268 |
+
Upgrade the transformers package to 4.44.2. See [this](https://github.com/THUDM/CogVideo/issues/213) issue.
|
| 269 |
+
|
| 270 |
## 🤝 Acknowledgements
|
| 271 |
|
| 272 |
We would like to express our gratitude to the following open-source projects that have been instrumental in the development of our project:
|