--- base_model: AlignmentResearch/Llama-3.3-Tiny-Instruct --- # Random LoRA Adapter for tiny-random-Llama-3 This is a randomly initialized LoRA adapter for the `AlignmentResearch/Llama-3.3-Tiny-Instruct` model. ## Details - **Base model**: AlignmentResearch/Llama-3.3-Tiny-Instruct - **Seed**: 0 - **LoRA rank**: 16 - **LoRA alpha**: 32 - **Target modules**: q_proj, v_proj, k_proj, o_proj ## Usage ```python from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer # Load base model base_model = AutoModelForCausalLM.from_pretrained("AlignmentResearch/Llama-3.3-Tiny-Instruct") tokenizer = AutoTokenizer.from_pretrained("AlignmentResearch/Llama-3.3-Tiny-Instruct") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "AlignmentResearch/Llama-3.3-Tiny-Instruct-lora-0") ``` This adapter was created for testing purposes and contains random weights.