AlirezaSaei commited on
Commit
880f01b
·
verified ·
1 Parent(s): 8b159b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -112
README.md CHANGED
@@ -3,197 +3,143 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
  - **Developed by:** Alireza Dastmalchi Saei
21
- - **Funded by [optional]:** -
22
- - **Shared by [optional]:** -
23
  - **Model type:** wav2vec2
24
  - **Language(s) (NLP):** Persian
25
  - **License:** MIT
26
- - **Finetuned from model [optional]:** wav2vec2-large-xlsr-53
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
 
 
75
 
76
- ## Training Details
 
77
 
78
- ### Training Data
 
 
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
  #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Model Card for wav2vec2-large-xlsr-persian-fine-tuned
 
 
 
 
7
 
8
  ## Model Details
9
 
10
  ### Model Description
11
 
12
+ This model is a fine-tuned version of `facebook/wav2vec2-large-xlsr-53` on Persian language data from the Mozilla Common Voice Dataset. The model is fine-tuned for automatic speech recognition (ASR) tasks.
 
 
13
 
14
  - **Developed by:** Alireza Dastmalchi Saei
15
+ - **Funded by:** -
16
+ - **Shared by:** -
17
  - **Model type:** wav2vec2
18
  - **Language(s) (NLP):** Persian
19
  - **License:** MIT
20
+ - **Finetuned from model:** wav2vec2-large-xlsr-53
 
 
21
 
22
+ ### Model Sources
23
 
24
+ - **Repository:** [Model Repository](https://huggingface.co/AlirezaSaei/wav2vec2-large-xlsr-persian-fine-tuned)
25
+ - **Paper:** -
26
+ - **Demo:** -
27
 
28
  ## Uses
29
 
 
 
30
  ### Direct Use
31
 
32
+ This model can be used directly for transcribing Persian speech to text but it needs to be further fine-tuned with data.
33
 
34
+ ### Downstream Use
35
 
36
+ The model can be fine-tuned further for specific ASR tasks or integrated into larger speech-processing pipelines.
 
 
 
 
37
 
38
  ### Out-of-Scope Use
39
 
40
+ The model is not suitable for languages other than Persian and may not perform well on noisy audio or speech with heavy accents not represented in the training data.
 
 
41
 
42
  ## Bias, Risks, and Limitations
43
 
44
+ The model is trained on a dataset that may not cover all variations of the Persian language, leading to potential biases in recognizing less represented dialects or accents.
 
 
45
 
46
  ### Recommendations
47
 
48
+ Users should be aware of the biases, risks, and limitations. Further fine-tuning on diverse datasets is recommended to mitigate these biases.
 
 
49
 
50
  ## How to Get Started with the Model
51
 
52
+ ```python
53
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
54
+ import torch
55
+ import torchaudio
56
 
57
+ # Load processor and model
58
+ processor = Wav2Vec2Processor.from_pretrained("AlirezaSaei/wav2vec2-large-xlsr-persian-fine-tuned")
59
+ model = Wav2Vec2ForCTC.from_pretrained("AlirezaSaei/wav2vec2-large-xlsr-persian-fine-tuned")
60
 
61
+ # Load audio file
62
+ audio_input, _ = torchaudio.load("path_to_audio.wav")
63
 
64
+ # Preprocess and predict
65
+ inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True)
66
+ logits = model(**inputs).logits
67
+ predicted_ids = torch.argmax(logits, dim=-1)
68
+ transcription = processor.batch_decode(predicted_ids)
69
 
70
+ print("Transcription:", transcription)
71
 
 
72
 
73
+ ## Training Details
74
 
75
+ ### Training Data
76
 
77
+ The model is fine-tuned on the Mozilla Common Voice Dataset. The training data includes Persian speech samples, with lengths filtered between 4 and 6 seconds for training and up to 15 seconds for testing.
78
 
79
+ ### Training Procedure
80
 
81
+ The audio is resampled from 48000 Hz to 16000 Hz. The tokenizer, feature extractor, and processor are defined using the `Wav2Vec2CTCTokenizer`, `Wav2Vec2FeatureExtractor`, and `Wav2Vec2Processor` classes.
82
 
83
  #### Training Hyperparameters
84
 
85
+ - **Training regime:** fp16 mixed precision
86
+ - **Batch Size:** 12
87
+ - **Num Epochs:** 5
88
+ - **Learning Rate:** 1e-4
89
+ - **Gradient Accumulation Steps:** 2
90
+ - **Warmup Steps:** 1000
91
 
92
+ ### Speeds, Sizes, Times
93
 
94
+ - **Training Files:** 2217
95
+ - **Testing Files:** 5212
96
+ - **Training Time (minutes):** 19.67
97
+ - **Total Parameters:** 315,479,720
98
+ - **Trainable Parameters:** 311,269,544
99
+ - **WER:** 1.0
100
 
101
  ## Evaluation
102
 
 
 
103
  ### Testing Data, Factors & Metrics
104
 
105
  #### Testing Data
106
 
107
+ The model is evaluated on a subset of the Mozilla Common Voice Dataset.
 
 
108
 
109
  #### Factors
110
 
111
+ Evaluation is disaggregated by different lengths of audio samples.
 
 
112
 
113
  #### Metrics
114
 
115
+ Word Error Rate (WER) is used as the evaluation metric. It measures the percentage of words that are incorrectly predicted.
 
 
116
 
117
  ### Results
118
 
119
+ The model achieves a WER of 1.0 on the test data.
 
 
 
 
 
 
 
 
 
 
120
 
121
  ## Environmental Impact
122
 
 
 
123
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
124
 
125
+ - **Hardware Type:** Colab T4 GPU
 
 
 
 
126
 
127
+ ## Technical Specifications
128
 
129
  ### Model Architecture and Objective
130
 
131
+ The model uses the Wav2Vec2 architecture, which is designed for automatic speech recognition.
132
 
133
  ### Compute Infrastructure
134
 
 
 
135
  #### Hardware
136
 
137
+ Colab T4 GPU
138
 
139
  #### Software
140
 
141
+ Python Notebook (.ipynb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  ## Model Card Contact
144
 
145
+ For further information, contact me.