AlpYzc commited on
Commit
b42bb85
·
verified ·
1 Parent(s): 4147cc4

Add comprehensive model card

Browse files
Files changed (1) hide show
  1. README.md +152 -194
README.md CHANGED
@@ -1,199 +1,157 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: llama2
3
+ base_model: codellama/CodeLlama-13b-hf
4
+ tags:
5
+ - code
6
+ - llama
7
+ - turkish
8
+ - fine-tuned
9
+ - programming
10
+ language:
11
+ - en
12
+ - tr
13
+ pipeline_tag: text-generation
14
  ---
15
 
16
+ # 🚀 Code Llama 13B - Turkish Custom Fine-tuned
17
+
18
+ Bu model, **CodeLlama-13b-hf**'den fine-tune edilmiş özel bir kod üretim modelidir.
19
+
20
+ ## 📊 Training İstatistikleri
21
+
22
+ - **Base Model**: `codellama/CodeLlama-13b-hf`
23
+ - **Training Examples**: 5,544
24
+ - **Validation Examples**: 616
25
+ - **Training Duration**: ~197.8 dakika
26
+ - **Trainable Parameters**: 62,586,880 (0.48%)
27
+ - **Final Train Loss**: 0.1901
28
+ - **Final Eval Loss**: 0.1577
29
+ - **GPU Memory**: 25.08 GB
30
+
31
+ ## 🎯 Desteklenen Görevler
32
+
33
+ - ✅ **Python Algorithm Implementation**
34
+ - ✅ **Data Structures (Stack, Queue, etc.)**
35
+ - ✅ **Web Development (React, JavaScript)**
36
+ - ✅ **Data Analysis (Pandas, NumPy)**
37
+ - ✅ **Machine Learning Code**
38
+ - ✅ **SQL Query Generation**
39
+ - ✅ **Error Handling & Best Practices**
40
+
41
+ ## 🚀 Kullanım
42
+
43
+ ```python
44
+ from transformers import AutoModelForCausalLM, AutoTokenizer
45
+ import torch
46
+
47
+ # Model ve tokenizer yükleme
48
+ model = AutoModelForCausalLM.from_pretrained(
49
+ "AlpYzc/code-llama-13b-turkish-custom",
50
+ torch_dtype=torch.float16,
51
+ device_map="auto"
52
+ )
53
+ tokenizer = AutoTokenizer.from_pretrained("AlpYzc/code-llama-13b-turkish-custom")
54
+
55
+ # Kod üretme fonksiyonu
56
+ def generate_code(prompt, max_length=200):
57
+ inputs = tokenizer(prompt, return_tensors="pt")
58
+
59
+ with torch.no_grad():
60
+ outputs = model.generate(
61
+ inputs.input_ids,
62
+ max_length=max_length,
63
+ temperature=0.7,
64
+ do_sample=True,
65
+ top_p=0.9,
66
+ pad_token_id=tokenizer.eos_token_id
67
+ )
68
+
69
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
70
+
71
+ # Örnek kullanım
72
+ prompt = "def factorial(n):"
73
+ generated_code = generate_code(prompt)
74
+ print(generated_code)
75
+ ```
76
+
77
+ ## 📝 Örnek Çıktılar
78
+
79
+ ### Factorial Function
80
+ ```python
81
+ # Input: def factorial(n):
82
+ # Output:
83
+ def factorial(n):
84
+ if n == 0:
85
+ return 1
86
+ else:
87
+ return n * factorial(n - 1)
88
+ ```
89
+
90
+ ### Binary Search
91
+ ```python
92
+ # Input: def binary_search(arr, target):
93
+ # Output:
94
+ def binary_search(arr, target):
95
+ left, right = 0, len(arr) - 1
96
+
97
+ while left <= right:
98
+ mid = (left + right) // 2
99
+ if arr[mid] == target:
100
+ return mid
101
+ elif arr[mid] < target:
102
+ left = mid + 1
103
+ else:
104
+ right = mid - 1
105
+
106
+ return -1
107
+ ```
108
+
109
+ ## ⚙️ Sistem Gereksinimleri
110
+
111
+ - **GPU Memory**: ~26GB (FP16)
112
+ - **RAM**: 32GB+ önerilir
113
+ - **CUDA**: 11.8+
114
+ - **Python**: 3.8+
115
+ - **Transformers**: 4.30+
116
+
117
+ ## 🔧 Fine-tuning Detayları
118
+
119
+ - **LoRA (Low-Rank Adaptation)** kullanıldı
120
+ - **Learning Rate**: Adaptive
121
+ - **Batch Size**: Optimized for 13B model
122
+ - **Epochs**: 2-3
123
+ - **Validation Strategy**: Split validation
124
+
125
+ ## 📈 Performance Metrics
126
+
127
+ Model şu alanlarda test edildi ve başarılı sonuçlar verdi:
128
+
129
+ 1. **Algorithm Implementation**: ✅ Passed
130
+ 2. **Data Structures**: ✅ Passed
131
+ 3. **Web Development**: ✅ Passed
132
+ 4. **Data Processing**: ✅ Passed
133
+ 5. **Machine Learning**: ✅ Passed
134
+ 6. **Database Operations**: ✅ Passed
135
+
136
+ ## ⚠️ Limitasyonlar
137
+
138
+ - Model 13B parametre içeriyor, yüksek GPU memory gerektirir
139
+ - Türkçe yorum satırları sınırlı olabilir
140
+ - Çok spesifik domain bilgisi gerektiren görevlerde ek fine-tuning gerekebilir
141
+ - Production kullanımında performans optimizasyonu yapılabilir
142
+
143
+ ## 📞 İletişim & Support
144
+
145
+ Model ile ilgili sorular, öneriler veya collaboration için:
146
+ - GitHub Issues üzerinden
147
+ - HuggingFace Community sekmesinden
148
+
149
+ ## 🙏 Acknowledgments
150
+
151
+ - **Meta AI** - Code Llama base model için
152
+ - **HuggingFace** - Transformers library için
153
+ - **Google Colab** - Training environment için
154
 
155
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
+ *Bu model eğitim ve araştırma amaçlı geliştirilmiştir. Production kullanımında sorumluluğu kullanıcıya aittir.*