Update README.md
Browse files
README.md
CHANGED
@@ -4,18 +4,17 @@ tags:
|
|
4 |
- multimodal
|
5 |
- classification
|
6 |
datasets:
|
7 |
-
-
|
8 |
-
-
|
9 |
---
|
10 |
|
11 |
-
# AstroM3-CLIP-all
|
12 |
-
|
13 |
AstroM³ is a self-supervised multimodal model for astronomy that integrates time-series photometry, spectra, and metadata into a unified embedding space
|
14 |
-
for classification and other downstream tasks. AstroM³ is trained on [AstroM3Processed](https://huggingface.co/datasets/
|
|
|
15 |
For more details on the AstroM³ architecture, training, and results, please refer to the [paper](https://arxiv.org/abs/2411.08842).
|
16 |
|
17 |
<p align="center">
|
18 |
-
<img src="astroclip-architecture.png" width="
|
19 |
<br />
|
20 |
<span>
|
21 |
Figure 1: Overview of the multimodal CLIP framework adapted for astronomy, incorporating three data modalities: photometric time-series, spectra, and metadata.
|
@@ -25,7 +24,7 @@ For more details on the AstroM³ architecture, training, and results, please ref
|
|
25 |
</span>
|
26 |
</p>
|
27 |
|
28 |
-
To
|
29 |
```sh
|
30 |
git clone https://github.com/MeriDK/AstroM3.git
|
31 |
cd AstroM3
|
@@ -37,14 +36,14 @@ source venv/bin/activate
|
|
37 |
uv pip install -r requirements.txt
|
38 |
```
|
39 |
|
40 |
-
A simple example to get started
|
41 |
1. Data Loading & Preprocessing
|
42 |
```python
|
43 |
from datasets import load_dataset
|
44 |
from src.data import process_photometry
|
45 |
|
46 |
# Load the test dataset
|
47 |
-
test_dataset = load_dataset('
|
48 |
|
49 |
# Process photometry to have a fixed sequence length of 200 (center-cropped)
|
50 |
test_dataset = test_dataset.map(process_photometry, batched=True, fn_kwargs={'seq_len': 200, 'how': 'center'})
|
@@ -56,7 +55,7 @@ import torch
|
|
56 |
from src.model import AstroM3
|
57 |
|
58 |
# Load the base AstroM3-CLIP model
|
59 |
-
model = AstroM3.from_pretrained('
|
60 |
|
61 |
# Retrieve the first sample (batch size = 1)
|
62 |
sample = test_dataset[0:1]
|
@@ -81,22 +80,22 @@ print('Multimodal Embedding (Spectra Missing):', multimodal_emb_missing)
|
|
81 |
from src.model import AstroM3, Informer, GalSpecNet, MetaModel
|
82 |
|
83 |
# Photometry classification
|
84 |
-
photo_model = Informer.from_pretrained('
|
85 |
prediction = photo_model(photometry, photometry_mask).argmax(dim=1).item()
|
86 |
print('Photometry Classification:', test_dataset.features['label'].int2str(prediction))
|
87 |
|
88 |
# Spectra classification
|
89 |
-
spectra_model = GalSpecNet.from_pretrained('
|
90 |
prediction = spectra_model(spectra).argmax(dim=1).item()
|
91 |
print('Spectra Classification:', test_dataset.features['label'].int2str(prediction))
|
92 |
|
93 |
# Metadata classification
|
94 |
-
meta_model = MetaModel.from_pretrained('
|
95 |
prediction = meta_model(metadata).argmax(dim=1).item()
|
96 |
print('Metadata Classification:', test_dataset.features['label'].int2str(prediction))
|
97 |
|
98 |
# Multimodal classification
|
99 |
-
all_model = AstroM3.from_pretrained('
|
100 |
prediction = all_model(photometry, photometry_mask, spectra, metadata).argmax(dim=1).item()
|
101 |
print('Multimodal Classification:', test_dataset.features['label'].int2str(prediction))
|
102 |
```
|
@@ -105,11 +104,11 @@ print('Multimodal Classification:', test_dataset.features['label'].int2str(predi
|
|
105 |
|
106 |
| # Model | # Description |
|
107 |
| :--- | :--- |
|
108 |
-
| [AstroM3-CLIP](https://huggingface.co/
|
109 |
-
| [AstroM3-CLIP-meta](https://huggingface.co/
|
110 |
-
| [AstroM3-CLIP-spectra](https://huggingface.co/
|
111 |
-
| [AstroM3-CLIP-photo](https://huggingface.co/
|
112 |
-
| [AstroM3-CLIP-all](https://huggingface.co/
|
113 |
|
114 |
## AstroM3-CLIP Variants
|
115 |
These variants of the base AstroM3-CLIP model are trained using different random seeds (42, 0, 66, 12, 123);
|
@@ -117,8 +116,21 @@ ensure that the dataset is loaded with the corresponding seed for consistency.
|
|
117 |
|
118 |
| # Model | # Description |
|
119 |
| :--- | :--- |
|
120 |
-
| [AstroM3-CLIP-42](https://huggingface.co/
|
121 |
-
| [AstroM3-CLIP-0](https://huggingface.co/
|
122 |
-
| [AstroM3-CLIP-66](https://huggingface.co/
|
123 |
-
| [AstroM3-CLIP-12](https://huggingface.co/
|
124 |
-
| [AstroM3-CLIP-123](https://huggingface.co/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- multimodal
|
5 |
- classification
|
6 |
datasets:
|
7 |
+
- AstroMLCore/AstroM3Processed
|
8 |
+
- AstroMLCore/AstroM3Dataset
|
9 |
---
|
10 |
|
|
|
|
|
11 |
AstroM³ is a self-supervised multimodal model for astronomy that integrates time-series photometry, spectra, and metadata into a unified embedding space
|
12 |
+
for classification and other downstream tasks. AstroM³ is trained on [AstroM3Processed](https://huggingface.co/datasets/AstroMLCore/AstroM3Processed),
|
13 |
+
which is the pre-processed version of [AstroM3Dataset](https://huggingface.co/datasets/AstroMLCore/AstroM3Dataset).
|
14 |
For more details on the AstroM³ architecture, training, and results, please refer to the [paper](https://arxiv.org/abs/2411.08842).
|
15 |
|
16 |
<p align="center">
|
17 |
+
<img src="astroclip-architecture.png" width="100%">
|
18 |
<br />
|
19 |
<span>
|
20 |
Figure 1: Overview of the multimodal CLIP framework adapted for astronomy, incorporating three data modalities: photometric time-series, spectra, and metadata.
|
|
|
24 |
</span>
|
25 |
</p>
|
26 |
|
27 |
+
To use AstroM³ for inference, install the AstroM3 library from our [GitHub repo](https://github.com/MeriDK/AstroM3).
|
28 |
```sh
|
29 |
git clone https://github.com/MeriDK/AstroM3.git
|
30 |
cd AstroM3
|
|
|
36 |
uv pip install -r requirements.txt
|
37 |
```
|
38 |
|
39 |
+
## A simple example to get started
|
40 |
1. Data Loading & Preprocessing
|
41 |
```python
|
42 |
from datasets import load_dataset
|
43 |
from src.data import process_photometry
|
44 |
|
45 |
# Load the test dataset
|
46 |
+
test_dataset = load_dataset('AstroMLCore/AstroM3Processed', name='full_42', split='test')
|
47 |
|
48 |
# Process photometry to have a fixed sequence length of 200 (center-cropped)
|
49 |
test_dataset = test_dataset.map(process_photometry, batched=True, fn_kwargs={'seq_len': 200, 'how': 'center'})
|
|
|
55 |
from src.model import AstroM3
|
56 |
|
57 |
# Load the base AstroM3-CLIP model
|
58 |
+
model = AstroM3.from_pretrained('AstroMLCore/AstroM3-CLIP')
|
59 |
|
60 |
# Retrieve the first sample (batch size = 1)
|
61 |
sample = test_dataset[0:1]
|
|
|
80 |
from src.model import AstroM3, Informer, GalSpecNet, MetaModel
|
81 |
|
82 |
# Photometry classification
|
83 |
+
photo_model = Informer.from_pretrained('AstroMLCore/AstroM3-CLIP-photo')
|
84 |
prediction = photo_model(photometry, photometry_mask).argmax(dim=1).item()
|
85 |
print('Photometry Classification:', test_dataset.features['label'].int2str(prediction))
|
86 |
|
87 |
# Spectra classification
|
88 |
+
spectra_model = GalSpecNet.from_pretrained('AstroMLCore/AstroM3-CLIP-spectra')
|
89 |
prediction = spectra_model(spectra).argmax(dim=1).item()
|
90 |
print('Spectra Classification:', test_dataset.features['label'].int2str(prediction))
|
91 |
|
92 |
# Metadata classification
|
93 |
+
meta_model = MetaModel.from_pretrained('AstroMLCore/AstroM3-CLIP-meta')
|
94 |
prediction = meta_model(metadata).argmax(dim=1).item()
|
95 |
print('Metadata Classification:', test_dataset.features['label'].int2str(prediction))
|
96 |
|
97 |
# Multimodal classification
|
98 |
+
all_model = AstroM3.from_pretrained('AstroMLCore/AstroM3-CLIP-all')
|
99 |
prediction = all_model(photometry, photometry_mask, spectra, metadata).argmax(dim=1).item()
|
100 |
print('Multimodal Classification:', test_dataset.features['label'].int2str(prediction))
|
101 |
```
|
|
|
104 |
|
105 |
| # Model | # Description |
|
106 |
| :--- | :--- |
|
107 |
+
| [AstroM3-CLIP](https://huggingface.co/AstroMLCore/AstroM3-CLIP) | The base model pre-trained using the trimodal CLIP approach. |
|
108 |
+
| [AstroM3-CLIP-meta](https://huggingface.co/AstroMLCore/AstroM3-CLIP-meta) | Fine-tuned for metadata-only classification. |
|
109 |
+
| [AstroM3-CLIP-spectra](https://huggingface.co/AstroMLCore/AstroM3-CLIP-spectra) | Fine-tuned for spectra-only classification. |
|
110 |
+
| [AstroM3-CLIP-photo](https://huggingface.co/AstroMLCore/AstroM3-CLIP-photo) | Fine-tuned for photometry-only classification. |
|
111 |
+
| [AstroM3-CLIP-all](https://huggingface.co/AstroMLCore/AstroM3-CLIP-all) | Fine-tuned for multimodal classification. |
|
112 |
|
113 |
## AstroM3-CLIP Variants
|
114 |
These variants of the base AstroM3-CLIP model are trained using different random seeds (42, 0, 66, 12, 123);
|
|
|
116 |
|
117 |
| # Model | # Description |
|
118 |
| :--- | :--- |
|
119 |
+
| [AstroM3-CLIP-42](https://huggingface.co/AstroMLCore/AstroM3-CLIP-42) | The base model pre-trained with random seed 42 (identical to AstroM3-CLIP). |
|
120 |
+
| [AstroM3-CLIP-0](https://huggingface.co/AstroMLCore/AstroM3-CLIP-0) | AstroM3-CLIP pre-trained with random seed 0 (use dataset with seed 0). |
|
121 |
+
| [AstroM3-CLIP-66](https://huggingface.co/AstroMLCore/AstroM3-CLIP-66) | AstroM3-CLIP pre-trained with random seed 66 (use dataset with seed 66). |
|
122 |
+
| [AstroM3-CLIP-12](https://huggingface.co/AstroMLCore/AstroM3-CLIP-12) | AstroM3-CLIP pre-trained with random seed 12 (use dataset with seed 12). |
|
123 |
+
| [AstroM3-CLIP-123](https://huggingface.co/AstroMLCore/AstroM3-CLIP-123) | AstroM3-CLIP pre-trained with random seed 123 (use dataset with seed 123). |
|
124 |
+
|
125 |
+
## Using your own data
|
126 |
+
|
127 |
+
Note that the data in the AstroM3Processed dataset is already pre-processed.
|
128 |
+
If you want to use the model with your own data, you must pre-process it in the same way:
|
129 |
+
|
130 |
+
1. **Spectra**: Each spectrum is interpolated to a fixed wavelength grid (3850–9000 Å), normalized using mean and MAD, and log-MAD is added as an auxiliary feature.
|
131 |
+
2. **Photometry**: Light curves are deduplicated, sorted by time, normalized using mean and MAD, time-scaled to [0, 1], and augmented with auxiliary features like log-MAD and time span.
|
132 |
+
3. **Metadata**: Scalar metadata is transformed via domain-specific functions (e.g., absolute magnitude, log, sin/cos), then normalized using dataset-level statistics.
|
133 |
+
|
134 |
+
For a detailed description, read the [paper](https://arxiv.org/abs/2411.08842).
|
135 |
+
To see exactly how we performed this preprocessing, refer to [`preprocess.py`](https://huggingface.co/datasets/AstroMLCore/AstroM3Dataset/blob/main/preprocess.py) in the AstroM3Dataset repo.
|
136 |
+
|