File size: 1,998 Bytes
a8d5bc3
 
 
 
 
 
 
 
 
 
a3dcd69
a8d5bc3
 
 
 
 
 
a3dcd69
a8d5bc3
 
 
 
 
a3dcd69
a8d5bc3
a3dcd69
a8d5bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3dcd69
a8d5bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
tags:
- vllm
- vision
- fp8
license: apache-2.0
license_link: >-
  https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: Qwen/Qwen2.5-VL-32B-Instruct
library_name: transformers
---

# Qwen2.5-VL-32B-Instruct-FP8-Dynamic

## Model Overview
- **Model Architecture:** Qwen2.5-VL-32B-Instruct
  - **Input:** Vision-Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Release Date:** 5/3/2025
- **Version:** 1.0
- **Model Developers:** BC Card

Quantized version of [Qwen/Qwen2.5-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct).

### Model Optimizations

This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2.

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="BCCard/Qwen2.5-VL-32B-Instruct-FP8-Dynamic",
    trust_remote_code=True,
    max_model_len=4096,
    max_num_seqs=2,
)

# prepare inputs
question = "What is the content of this image?"
inputs = {
    "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
    "multi_modal_data": {
        "image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
    },
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.