File size: 9,423 Bytes
7daa40c 10ded47 7daa40c 10ded47 7daa40c 10ded47 7daa40c 10ded47 7daa40c 10ded47 7daa40c 0b3f0ad 7daa40c ce588ec 7daa40c ce588ec 7daa40c ce588ec 7daa40c ce588ec 7daa40c ce588ec 7daa40c ce588ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
language: en
model_name: Wav2Vec2-BART (Base) English ASR - VoxPopuli Best WER
license: mit
tags:
- automatic-speech-recognition
- speech-encoder-decoder
- wav2vec2
- bart
- english
- voxpopuli
- generated_from_trainer
- audio
- master-thesis
- pytorch
- transformers
datasets:
- facebook/voxpopuli
base_model:
- facebook/wav2vec2-base-en-voxpopuli-v2
- facebook/bart-base
model-index:
- name: matejhornik/wav2vec2-base_bart-base_voxpopuli-en
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: VoxPopuli (English, Test)
type: facebook/voxpopuli
config: en
split: test
metrics:
- name: WER
type: wer
value: 8.848048503220916
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: VoxPopuli (English, Validation)
type: facebook/voxpopuli
config: en
split: validation
metrics:
- name: WER
type: wer
value: 8.554638942253362
pipeline_tag: automatic-speech-recognition
library_name: transformers
metrics:
- wer
---
# Wav2Vec2-BART (Base) for English ASR on VoxPopuli - Best WER from Master's Thesis
This repository contains the checkpoint for a `SpeechEncoderDecoderModel` fine-tuned for Automatic Speech Recognition (ASR) on the English portion of the VoxPopuli dataset. This model achieved the **best Word Error Rate (WER) of 8.85% on the VoxPopuli English test set** within the experimental framework of the Master's thesis "Effective Training of Neural Networks for Automatic Speech Recognition" by Matej Horník.
The model leverages a pre-trained **Wav2Vec2 (Base)** encoder [`facebook/wav2vec2-base-en-voxpopuli-v2`](https://huggingface.co/facebook/wav2vec2-base-en-voxpopuli-v2) and a pre-trained **BART (Base)** decoder [`facebook/bart-base`](https://huggingface.co/facebook/bart-base).
## Thesis Context
This model is a direct result of work conducted for the Master's thesis:
* **Title:** Effective Training of Neural Networks for Automatic Speech Recognition
* **Author:** Matej Horník
* **Supervisor:** Ing. Alexander Polok
* **Institution:** Brno University of Technology, Faculty of Information Technology
* **Year:** 2025
* **Thesis Link:** [Link to thesis PDF](https://www.vut.cz/en/students/final-thesis/detail/164401)
> [!NOTE]
> Link will be available after the thesis defense.
### Thesis Abstract (English)
This master's thesis focuses on improving the training efficiency and performance of encoder-decoder transformer models for Automatic Speech Recognition (ASR). It investigates the impact of initialization strategies using pre-trained components (Wav2Vec2, BART), the role of convolutional adapters, and Parameter-Efficient Fine-tuning (PEFT) methods like LoRA and DoRA. Experiments on LibriSpeech and VoxPopuli datasets confirmed that full pre-trained initialization is crucial for best Word Error Rate (WER) and convergence. An optimal number of adapters improved performance, while PEFT (especially LoRA) significantly reduced trainable parameters with comparable accuracy. Domain-specific encoder pre-training proved beneficial, and the encoder-decoder model outperformed a CTC baseline in accuracy, offering practical insights for efficient ASR training.
## Model Details
* **Encoder:** `facebook/wav2vec2-base-en-voxpopuli-v2`. This is a Wav2Vec2 (Base) model pre-trained by Facebook on 24.1k hours of unlabeled English VoxPopuli data.
* **Decoder:** `facebook/bart-base`. This is a standard BART (Base) model.
* **Architecture:** `SpeechEncoderDecoderModel` from Hugging Face Transformers.
* **Adapters:** 3 convolutional adapter layers were added to the encoder's output to better align its temporal resolution with the BART decoder's input requirements.
* **Feature Extractor:** The Wav2Vec2 feature extractor (initial CNN layers) was kept frozen during fine-tuning, as experiments showed this maintained performance while reducing trainable parameters.
### Initial Model Construction
The base model (before fine-tuning for this specific result) was constructed by combining the pre-trained `facebook/wav2vec2-base-en-voxpopuli-v2` (encoder) and `facebook/bart-base` (decoder) using `SpeechEncoderDecoderModel.from_encoder_decoder_pretrained`. To create the model, code is provided in [create_model.py](create_model.py).
```bash
python create_model.py
```
## Training Data
### Data
The model was fine-tuned on the `train` split of the English portion of the [VoxPopuli dataset](https://huggingface.co/datasets/facebook/voxpopuli) (`facebook/voxpopuli`, config `en`).
Audio data was resampled to 16kHz. Text transcriptions were tokenized using the BART tokenizer and lowercased.
### Procedure
The model was fine-tuned using modified [`run_speech_recognition_seq2seq.py`](https://github.com/hornikmatej/thesis_mit/blob/main/run_speech_recognition_seq2seq.py) script (provided in the thesis materials, based on Hugging Face's example scripts).
**Key Hyperparameters:**
* **Optimizer:** AdamW
* **Learning Rate:** `1e-4`
* **LR Scheduler:** `cosine_with_min_lr` (min\_lr: `5e-9`)
* **Warmup Steps:** 2000
* **Batch Size (per device):** 96
* **Gradient Accumulation Steps:** 1
* **Number of Epochs:** 20
* **Weight Decay:** 0.01
* **Label Smoothing Factor:** 0.05
* **Mixed Precision:** bf16
* **SpecAugment:** Applied during training
* `mask_time_prob`: 0.25, `mask_time_length`: 30, `mask_time_min_masks`: 2
* `mask_feature_prob`: 0.3, `mask_feature_length`: 30, `mask_feature_min_masks`: 1
* **Feature Extractor:** Frozen
The full training command can be found in the [thesis materials](https://github.com/hornikmatej/thesis_mit/blob/main/run_scripts/voxpopuli_best.sh), including the specific arguments used.
## Evaluation
The model achieves the following Word Error Rate (WER) on the VoxPopuli English dataset:
| Dataset Split | WER (%) | Loss |
|---------------|---------|-------|
| Validation | 8.55% | 1.056 |
| Test | 8.85% | 1.076 |
For detailed training logs, metrics, and visualizations, please refer to the Weights & Biases report:
[](https://api.wandb.ai/links/xhorni20-fitvut/2018dikj)
## How to Use
You can use this model for inference with the Hugging Face `transformers` library.
[](https://colab.research.google.com/github/hornikmatej/thesis_mit/blob/main/graphs/colab_ntb.ipynb)
```python
from transformers import SpeechEncoderDecoderModel, AutoProcessor
import torch
from datasets import load_dataset
MODEL_ID = "matejhornik/wav2vec2-base_bart-base_voxpopuli-en"
DATASET_ID = "facebook/voxpopuli"
DATASET_CONFIG = "en"
DATASET_SPLIT = "test" # "validation"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = SpeechEncoderDecoderModel.from_pretrained(MODEL_ID).to(device)
print(f"Using device: {device}\nStreaming one sample from '{DATASET_ID}'"
"(config: '{DATASET_CONFIG}', split: '{DATASET_SPLIT}')...")
streamed_dataset = load_dataset(
DATASET_ID,
DATASET_CONFIG,
split=DATASET_SPLIT,
streaming=True,
)
sample = next(iter(streamed_dataset))
audio_input = sample["audio"]["array"]
input_sampling_rate = sample["audio"]["sampling_rate"]
inputs = processor(audio_input, sampling_rate=input_sampling_rate, return_tensors="pt", padding=True)
input_features = inputs.input_values.to(device)
with torch.no_grad():
predicted_ids = model.generate(input_features, max_length=128)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
print(f"\nOriginal: {sample['normalized_text']}")
print(f"Transcribed: {transcription}")
```
### Framework Versions
This model was trained using:
- Python: `^3.10`
- Transformers: `~4.46.3`
- PyTorch: `~2.5.1`
- Datasets: `^3.2.0`
- PEFT: `^0.14.0`
- Accelerate: `^1.4.0`
- Evaluate: `^0.4.3`
- WandB: `^0.19.7`
Visit the [pyproject.toml](https://github.com/hornikmatej/thesis_mit/blob/main/pyproject.toml) file for a complete list of dependencies.
## Citation
Citation
If you use this model or findings from the thesis, please cite:
[](https://www.vut.cz/en/students/final-thesis/detail/164401)
```bibtex
@mastersthesis{Hornik2025EffectiveTraining,
author = {Horník, Matej},
title = {Effective Training of Neural Networks for Automatic Speech Recognition},
school = {Brno University of Technology, Faculty of Information Technology},
year = {2025},
supervisor = {Polok, Alexander},
type = {Master's Thesis},
note = {Online. Available at: \url{https://www.vut.cz/en/students/final-thesis/detail/164401}}
}
```
## Acknowledgements
- My supervisor, Ing. Alexander Polok, for his valuable guidance and support.
- The Hugging Face team for their comprehensive transformers, datasets, and evaluate libraries.
- The creators of Wav2Vec2, BART, and the VoxPopuli dataset.
## Contact
For questions, feedback, or collaboration opportunities related to this thesis or any other stuff, feel free to reach out:
- **Email:** [email protected] / [email protected]
- **GitHub:** [hornikmatej](https://github.com/hornikmatej)
|