--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: [] --- # my_awesome_wnut_model This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5795 - Precision: 0.2438 - Recall: 0.6759 - F1: 0.3583 - Accuracy: 0.8634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.5943 | 1.0 | 38 | 0.3653 | 0.1156 | 0.6069 | 0.1943 | 0.8489 | | 1.5943 | 2.0 | 76 | 0.3859 | 0.2032 | 0.7034 | 0.3153 | 0.8691 | | 0.2445 | 3.0 | 114 | 0.4085 | 0.2422 | 0.8069 | 0.3726 | 0.8679 | | 0.2445 | 4.0 | 152 | 0.3778 | 0.2013 | 0.6345 | 0.3056 | 0.8733 | | 0.2445 | 5.0 | 190 | 0.4417 | 0.2010 | 0.5448 | 0.2937 | 0.8755 | | 0.0861 | 6.0 | 228 | 0.5795 | 0.2438 | 0.6759 | 0.3583 | 0.8634 | ### Framework versions - Transformers 4.53.2 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2