File size: 9,202 Bytes
41e8e95 b993dbd 41e8e95 b08f172 41e8e95 836c8ea 41e8e95 836c8ea 41e8e95 836c8ea 41e8e95 836c8ea 41e8e95 6ae928a 41e8e95 836c8ea 41e8e95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
license: mit
language:
- en
- zh
metrics:
- accuracy
base_model:
- Qwen/Qwen3-14B
pipeline_tag: text-generation
library_name: transformers
tags:
- blockchain
- conversational
- web3
- qwen3
eval_results:
- task: domain-specific evaluation
dataset: DMindAI/DMind_Benchmark
metric: normalized web3 score
score: 74.12
model: DMind-1-mini
model_rank: 2 / 24
---
<p align="center">
<img src="figures/dmind-ai-logo.png" width="300" alt="DMind Logo" />
</p>
<hr>
<div align="center" style="line-height: 1;">
<a href="https://dmind.ai/" target="_blank" style="margin: 2px;">
<img alt="DMind Website" src="https://img.shields.io/badge/DMind-Homepage-blue?logo=data:image/svg+xml;base64,)" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/DMindAI" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/HuggingFace-DMind-ffd21f?color=ffd21f&logo=huggingface" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://x.com/dmind_ai" target="_blank" style="margin: 2px;">
<img alt="X" src="https://img.shields.io/badge/X-@DMind-1DA1F2?logo=x" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://openrouter.ai/chat" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DMind--1--mini-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://discord.gg/xxwmPHU3" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-DMind-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://opensource.org/licenses/MIT" target="_blank" style="margin: 2px;">
<img alt="Code License: MIT" src="https://img.shields.io/badge/Code%20License-MIT-yellow.svg" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
## Table of Contents
- [Introduction](#introduction)
- [1. Model Overview](#1-model-overview)
- [2. Evaluation Results](#2-evaluation-results)
- [3. Use Cases](#3-use-cases)
- [4. Quickstart](#4-quickstart)
- [4.1 Model Downloads](#41-model-downloads)
- [4.2 OpenRouter API](#42-openrouter-api)
- [4.3 OpenRouter Web Chat](#43-openrouter-web-chat)
- [License](#license)
- [Contact](#contact)
## Introduction
We introduce **DMind-1**, a domain-specialized LLM fine-tuned for the Web3 ecosystem via supervised instruction tuning and reinforcement learning from human feedback (RLHF).
To support real-time and resource-constrained applications, we further introduce **DMind-1-mini**, a compact variant distilled from both DMind-1 and a generalist LLM using a multi-level distillation framework. It retains key domain reasoning abilities while operating with significantly lower computational overhead.
**DMind-1** and **DMind-1-mini** represent a robust foundation for intelligent agents in the Web3 ecosystem.
## 1. Model Overview
### DMind-1-mini
To address scenarios requiring lower latency and faster inference, we introduce **DMind-1-mini**, a lightweight distilled version of DMind-1 based on Qwen3-14B. DMind-1-mini is trained using knowledge distillation and our custom **DeepResearch** framework, drawing from two teacher models:
- **DMind-1** (Qwen3-32B): Our specialized Web3 domain model.
- **GPT-o3 + DeepResearch**: A general-purpose SOTA LLM, with its outputs processed through our DeepResearch framework for Web3 domain alignment.
The **Distillation pipeline** combines:
- **Web3-specific data distillation**: High-quality instruction-following and QA examples generated by the teacher models.
- **Distribution-level supervision**: The student model learns to approximate the teachers' output distributions through soft-label guidance, preserving nuanced prediction behavior and confidence calibration.
- **Intermediate representation transfer**: Knowledge is transferred by aligning intermediate representations between teacher and student models, promoting deeper structural understanding beyond surface-level mimicry.
This multi-level distillation strategy enables DMind-1-mini to maintain high Web3 task performance while significantly reducing computational overhead and latency, making it suitable for real-time applications such as instant Q&A, on-chain analytics, and lightweight agent deployment.
## 2. Evaluation Results

We evaluate DMind-1 and DMind-1-mini using the [DMind Benchmark](https://huggingface.co/datasets/DMindAI/DMind_Benchmark), a domain-specific evaluation suite designed to assess large language models in the Web3 context. The benchmark includes 1,917 expert-reviewed questions across nine core domain categories, and it features both multiple-choice and open-ended tasks to measure factual knowledge, contextual reasoning, and other abilities.
To complement accuracy metrics, we conducted a **cost-performance analysis** by comparing benchmark scores against publicly available input token prices across 24 leading LLMs. In this evaluation:
- **DMind-1** achieved the highest Web3 score while maintaining one of the lowest token input costs among top-tier models such as Grok 3 and Claude 3.5 Sonnet.
- **DMind-1-mini** ranked second, retaining over 95% of DMind-1’s performance with greater efficiency in latency and compute.
Both models are uniquely positioned in the most favorable region of the score vs. price curve, delivering state-of-the-art Web3 reasoning at significantly lower cost. This balance of quality and efficiency makes the DMind models highly competitive for both research and production use.
## 3. Use Cases
- **Expert-Level Question & Answering**: Provides accurate, context-aware answers on blockchain, DeFi, smart contracts, and related Web3 topics.
- **Compliance-Aware Support**: Assists in drafting or reviewing content within regulatory and legal contexts.
- **Content Generation in Domain**: Produces Web3-specific blog posts, documentation, and tutorials tailored to developers and users.
- **DeFi Strategy Suggestions**: Generates insights and recommendations for yield farming, liquidity provision, and portfolio strategies based on user-provided data.
- **Risk Management**: Suggests strategies aligned with user risk profiles for more informed decision-making in volatile markets.
## 4. Quickstart
### 4.1 Model Downloads
| **Model** | **Base Model** | **Download** |
|:--------------:|:--------------:|:----------------------------------------------------------------------------:|
| DMind-1-mini | Qwen3-14B | [Hugging Face Link](https://huggingface.co/dmind-ai/dmind-1-mini) |
### 4.2 OpenRouter API
You can access **DMind-1-mini** via the OpenRouter API. Simply specify the desired model in the `model` field of your request payload.
**API Endpoint:**
```
https://openrouter.ai/api/v1/chat/completions
```
**Authentication:**
- Obtain your API key from [OpenRouter](https://openrouter.ai/)
- Include it in the `Authorization` header as `Bearer YOUR_API_KEY`
**Model Identifiers:**
- `DMind-1-mini` — Full-size expert model
**Example Request (Python):**
```python
import requests
headers = {
"Authorization": "Bearer YOUR_API_KEY",
"Content-Type": "application/json"
}
data = {
"model": "DMind-1-mini",
"messages": [
{"role": "user", "content": "Explain DeFi in simple terms."}
]
}
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers=headers,
json=data
)
print(response.json())
```
**Example Request (cURL):**
```bash
curl https://openrouter.ai/api/v1/chat/completions \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "DMind-1-mini",
"messages": [{"role": "user", "content": "What is a smart contract?"}]
}'
```
**Notes:**
- Replace `YOUR_API_KEY` with your actual OpenRouter API key.
- Change the `model` field to `DMind-1-mini` as needed.
- Both models support the same API structure for easy integration.
### 4.3 OpenRouter Web Chat
You can try **DMind-1-mini** instantly using the [OpenRouter Web Chat](https://openrouter.ai/chat).
- Select your desired model from the dropdown menu (**DMind-1-mini**).
- Enter your prompt and interact with the model in real time.
[](https://openrouter.ai/chat)
## License
- The code repository and model weights for DMind-1-mini is released under the MIT License.
- Commercial use, modification, and derivative works (including distillation and fine-tuning) are permitted.
- **Base Models:**
- DMind-1-mini is derived from Qwen3-14B, originally licensed under the [Qwen License](https://github.com/QwenLM/Qwen3).
- Please ensure compliance with the original base model licenses when using or distributing derivatives.
## Contact
For questions or support, please contact [email protected] |