File size: 2,957 Bytes
c7be5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: valueeval24-modern-bert-cos-initialfreeze-diff-lr-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# valueeval24-modern-bert-cos-initialfreeze-diff-lr-2

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7800
- F1: 0.2007
- Roc Auc: 0.5700
- Accuracy: 0.1008

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
| 0.0167        | 1.0   | 3115  | 0.1945          | 0.1955 | 0.5655  | 0.1004   |
| 0.0146        | 2.0   | 6230  | 0.2180          | 0.1987 | 0.5679  | 0.1013   |
| 0.0133        | 3.0   | 9345  | 0.2485          | 0.2006 | 0.5698  | 0.0991   |
| 0.0114        | 4.0   | 12460 | 0.2969          | 0.1893 | 0.5627  | 0.0950   |
| 0.0101        | 5.0   | 15575 | 0.3334          | 0.1969 | 0.5684  | 0.0973   |
| 0.0082        | 6.0   | 18690 | 0.4324          | 0.1971 | 0.5682  | 0.0995   |
| 0.0065        | 7.0   | 21805 | 0.6038          | 0.1950 | 0.5677  | 0.0959   |
| 0.0043        | 8.0   | 24920 | 0.6648          | 0.2028 | 0.5731  | 0.0978   |
| 0.0033        | 9.0   | 28035 | 0.6840          | 0.2052 | 0.5725  | 0.1030   |
| 0.0015        | 10.0  | 31150 | 0.7048          | 0.2037 | 0.5728  | 0.1016   |
| 0.0009        | 11.0  | 34265 | 0.7291          | 0.1944 | 0.5667  | 0.0987   |
| 0.0006        | 12.0  | 37380 | 0.7446          | 0.1990 | 0.5693  | 0.0993   |
| 0.0004        | 13.0  | 40495 | 0.7531          | 0.2017 | 0.5712  | 0.1004   |
| 0.0003        | 14.0  | 43610 | 0.7655          | 0.1987 | 0.5684  | 0.1008   |
| 0.0002        | 15.0  | 46725 | 0.7750          | 0.1976 | 0.5680  | 0.0988   |
| 0.0002        | 16.0  | 49840 | 0.7800          | 0.2007 | 0.5700  | 0.1008   |


### Framework versions

- Transformers 4.53.1
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.2