File size: 2,957 Bytes
c7be5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: valueeval24-modern-bert-cos-initialfreeze-diff-lr-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# valueeval24-modern-bert-cos-initialfreeze-diff-lr-2
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7800
- F1: 0.2007
- Roc Auc: 0.5700
- Accuracy: 0.1008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
| 0.0167 | 1.0 | 3115 | 0.1945 | 0.1955 | 0.5655 | 0.1004 |
| 0.0146 | 2.0 | 6230 | 0.2180 | 0.1987 | 0.5679 | 0.1013 |
| 0.0133 | 3.0 | 9345 | 0.2485 | 0.2006 | 0.5698 | 0.0991 |
| 0.0114 | 4.0 | 12460 | 0.2969 | 0.1893 | 0.5627 | 0.0950 |
| 0.0101 | 5.0 | 15575 | 0.3334 | 0.1969 | 0.5684 | 0.0973 |
| 0.0082 | 6.0 | 18690 | 0.4324 | 0.1971 | 0.5682 | 0.0995 |
| 0.0065 | 7.0 | 21805 | 0.6038 | 0.1950 | 0.5677 | 0.0959 |
| 0.0043 | 8.0 | 24920 | 0.6648 | 0.2028 | 0.5731 | 0.0978 |
| 0.0033 | 9.0 | 28035 | 0.6840 | 0.2052 | 0.5725 | 0.1030 |
| 0.0015 | 10.0 | 31150 | 0.7048 | 0.2037 | 0.5728 | 0.1016 |
| 0.0009 | 11.0 | 34265 | 0.7291 | 0.1944 | 0.5667 | 0.0987 |
| 0.0006 | 12.0 | 37380 | 0.7446 | 0.1990 | 0.5693 | 0.0993 |
| 0.0004 | 13.0 | 40495 | 0.7531 | 0.2017 | 0.5712 | 0.1004 |
| 0.0003 | 14.0 | 43610 | 0.7655 | 0.1987 | 0.5684 | 0.1008 |
| 0.0002 | 15.0 | 46725 | 0.7750 | 0.1976 | 0.5680 | 0.0988 |
| 0.0002 | 16.0 | 49840 | 0.7800 | 0.2007 | 0.5700 | 0.1008 |
### Framework versions
- Transformers 4.53.1
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.2
|