Upload folder using huggingface_hub
Browse files- ui-tars-setup-commands.md +221 -0
ui-tars-setup-commands.md
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# UI-TARS 1.5-7B Model Setup Commands
|
| 2 |
+
|
| 3 |
+
This document contains all the commands executed to download, convert, and quantize the ByteDance-Seed/UI-TARS-1.5-7B model for use with Ollama.
|
| 4 |
+
|
| 5 |
+
## Prerequisites
|
| 6 |
+
|
| 7 |
+
### 1. Verify Ollama Installation
|
| 8 |
+
```bash
|
| 9 |
+
ollama --version
|
| 10 |
+
```
|
| 11 |
+
|
| 12 |
+
### 2. Install System Dependencies
|
| 13 |
+
```bash
|
| 14 |
+
# Install sentencepiece via Homebrew
|
| 15 |
+
brew install sentencepiece
|
| 16 |
+
|
| 17 |
+
# Install Python packages
|
| 18 |
+
pip3 install sentencepiece gguf protobuf huggingface_hub
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
## Step 1: Download the UI-TARS Model
|
| 22 |
+
|
| 23 |
+
### Create directory and download model
|
| 24 |
+
```bash
|
| 25 |
+
# Create directory for the model
|
| 26 |
+
mkdir -p /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b
|
| 27 |
+
|
| 28 |
+
# Change to the directory
|
| 29 |
+
cd /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b
|
| 30 |
+
|
| 31 |
+
# Download the complete model from HuggingFace
|
| 32 |
+
huggingface-cli download ByteDance-Seed/UI-TARS-1.5-7B --local-dir . --local-dir-use-symlinks False
|
| 33 |
+
|
| 34 |
+
# Verify download
|
| 35 |
+
ls -la
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Step 2: Setup llama.cpp for Conversion
|
| 39 |
+
|
| 40 |
+
### Clone and build llama.cpp
|
| 41 |
+
```bash
|
| 42 |
+
# Navigate to AI directory
|
| 43 |
+
cd /Users/qoneqt/Desktop/shubham/ai
|
| 44 |
+
|
| 45 |
+
# Clone llama.cpp repository
|
| 46 |
+
git clone https://github.com/ggerganov/llama.cpp.git
|
| 47 |
+
|
| 48 |
+
# Navigate to llama.cpp directory
|
| 49 |
+
cd llama.cpp
|
| 50 |
+
|
| 51 |
+
# Create build directory and configure with CMake
|
| 52 |
+
mkdir build
|
| 53 |
+
cd build
|
| 54 |
+
cmake ..
|
| 55 |
+
|
| 56 |
+
# Build the project (this will take a few minutes)
|
| 57 |
+
make -j$(sysctl -n hw.ncpu)
|
| 58 |
+
|
| 59 |
+
# Verify the quantize tool was built
|
| 60 |
+
ls -la bin/llama-quantize
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## Step 3: Convert Safetensors to GGUF Format
|
| 64 |
+
|
| 65 |
+
### Create output directory and convert to F16 GGUF
|
| 66 |
+
```bash
|
| 67 |
+
# Create directory for GGUF files
|
| 68 |
+
mkdir -p /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf
|
| 69 |
+
|
| 70 |
+
# Navigate to llama.cpp directory
|
| 71 |
+
cd /Users/qoneqt/Desktop/shubham/ai/llama.cpp
|
| 72 |
+
|
| 73 |
+
# Convert safetensors to F16 GGUF (this takes ~5-10 minutes)
|
| 74 |
+
python convert_hf_to_gguf.py /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b \
|
| 75 |
+
--outfile /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf \
|
| 76 |
+
--outtype f16
|
| 77 |
+
|
| 78 |
+
# Check the F16 file size
|
| 79 |
+
ls -lh /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
## Step 4: Quantize to Q4_K_M Format
|
| 83 |
+
|
| 84 |
+
### Quantize the F16 model to reduce size
|
| 85 |
+
```bash
|
| 86 |
+
# Navigate to the build directory
|
| 87 |
+
cd /Users/qoneqt/Desktop/shubham/ai/llama.cpp/build
|
| 88 |
+
|
| 89 |
+
# Quantize F16 to Q4_K_M (this takes ~1-2 minutes)
|
| 90 |
+
./bin/llama-quantize \
|
| 91 |
+
/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf \
|
| 92 |
+
/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-q4_k_m.gguf \
|
| 93 |
+
q4_k_m
|
| 94 |
+
|
| 95 |
+
# Check the quantized file size
|
| 96 |
+
ls -lh /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-q4_k_m.gguf
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
## Step 5: Create Modelfiles for Ollama
|
| 100 |
+
|
| 101 |
+
### Create Modelfile for F16 version
|
| 102 |
+
```bash
|
| 103 |
+
cd /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf
|
| 104 |
+
|
| 105 |
+
cat > Modelfile << 'EOF'
|
| 106 |
+
FROM ./ui-tars-1.5-7b-f16.gguf
|
| 107 |
+
|
| 108 |
+
TEMPLATE """<|im_start|>system
|
| 109 |
+
You are UI-TARS, an advanced AI assistant specialized in user interface automation and interaction. You can analyze screenshots, understand UI elements, and provide precise instructions for automating user interface tasks. When provided with a screenshot, analyze the visual elements and provide detailed, actionable guidance.
|
| 110 |
+
|
| 111 |
+
Key capabilities:
|
| 112 |
+
- Screenshot analysis and UI element detection
|
| 113 |
+
- Step-by-step automation instructions
|
| 114 |
+
- Precise coordinate identification for clicks and interactions
|
| 115 |
+
- Understanding of various UI frameworks and applications<|im_end|>
|
| 116 |
+
<|im_start|>user
|
| 117 |
+
{{ .Prompt }}<|im_end|>
|
| 118 |
+
<|im_start|>assistant
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
PARAMETER stop "<|end|>"
|
| 122 |
+
PARAMETER stop "<|user|>"
|
| 123 |
+
PARAMETER stop "<|assistant|>"
|
| 124 |
+
PARAMETER temperature 0.7
|
| 125 |
+
PARAMETER top_p 0.9
|
| 126 |
+
EOF
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### Create Modelfile for quantized version
|
| 130 |
+
```bash
|
| 131 |
+
cat > Modelfile-q4 << 'EOF'
|
| 132 |
+
FROM ./ui-tars-1.5-7b-q4_k_m.gguf
|
| 133 |
+
|
| 134 |
+
TEMPLATE """<|im_start|>system
|
| 135 |
+
You are UI-TARS, an advanced AI assistant specialized in user interface automation and interaction. You can analyze screenshots, understand UI elements, and provide precise instructions for automating user interface tasks. When provided with a screenshot, analyze the visual elements and provide detailed, actionable guidance.
|
| 136 |
+
|
| 137 |
+
Key capabilities:
|
| 138 |
+
- Screenshot analysis and UI element detection
|
| 139 |
+
- Step-by-step automation instructions
|
| 140 |
+
- Precise coordinate identification for clicks and interactions
|
| 141 |
+
- Understanding of various UI frameworks and applications<|im_end|>
|
| 142 |
+
<|im_start|>user
|
| 143 |
+
{{ .Prompt }}<|im_end|>
|
| 144 |
+
<|im_start|>assistant
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
PARAMETER stop "<|end|>"
|
| 148 |
+
PARAMETER stop "<|user|>"
|
| 149 |
+
PARAMETER stop "<|assistant|>"
|
| 150 |
+
PARAMETER temperature 0.7
|
| 151 |
+
PARAMETER top_p 0.9
|
| 152 |
+
EOF
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
## Step 6: Create Models in Ollama
|
| 156 |
+
|
| 157 |
+
### Create the F16 model (high quality, larger size)
|
| 158 |
+
```bash
|
| 159 |
+
cd /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf
|
| 160 |
+
ollama create ui-tars:latest -f Modelfile
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
### Create the quantized model (recommended for daily use)
|
| 164 |
+
```bash
|
| 165 |
+
ollama create ui-tars:q4 -f Modelfile-q4
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
## Step 7: Verify Installation
|
| 169 |
+
|
| 170 |
+
### List all available models
|
| 171 |
+
```bash
|
| 172 |
+
ollama list
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
### Test the quantized model
|
| 176 |
+
```bash
|
| 177 |
+
ollama run ui-tars:q4 "Hello! Can you help me with UI automation tasks?"
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
### Test with an image (if you have one)
|
| 181 |
+
```bash
|
| 182 |
+
ollama run ui-tars:q4 "Analyze this screenshot and tell me what UI elements you can see" --image /path/to/your/screenshot.png
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
## File Sizes and Results
|
| 186 |
+
|
| 187 |
+
After completion, you should have:
|
| 188 |
+
|
| 189 |
+
- **Original model**: `/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b/` (~15GB, 19 files)
|
| 190 |
+
- **F16 GGUF**: `/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf` (~14.5GB)
|
| 191 |
+
- **Quantized GGUF**: `/Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-q4_k_m.gguf` (~4.4GB)
|
| 192 |
+
- **Ollama models**:
|
| 193 |
+
- `ui-tars:latest` (~15GB in Ollama)
|
| 194 |
+
- `ui-tars:q4` (~4.7GB in Ollama) ⭐ **Recommended for daily use**
|
| 195 |
+
|
| 196 |
+
## Usage Tips
|
| 197 |
+
|
| 198 |
+
1. **Use the quantized model (`ui-tars:q4`)** for regular use - it's 69% smaller with minimal quality loss
|
| 199 |
+
2. **The model supports vision capabilities** - you can send screenshots for UI analysis
|
| 200 |
+
3. **Proper image formats**: PNG, JPEG, WebP are supported
|
| 201 |
+
4. **For UI automation**: Provide clear screenshots and specific questions about what you want to automate
|
| 202 |
+
|
| 203 |
+
## Cleanup (Optional)
|
| 204 |
+
|
| 205 |
+
If you want to save disk space after setup:
|
| 206 |
+
|
| 207 |
+
```bash
|
| 208 |
+
# Remove the original downloaded files (optional)
|
| 209 |
+
rm -rf /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b
|
| 210 |
+
|
| 211 |
+
# Remove the F16 GGUF if you only need the quantized version (optional)
|
| 212 |
+
rm /Users/qoneqt/Desktop/shubham/ai/ui-tars-1.5-7b-gguf/ui-tars-1.5-7b-f16.gguf
|
| 213 |
+
|
| 214 |
+
# Remove llama.cpp if no longer needed (optional)
|
| 215 |
+
rm -rf /Users/qoneqt/Desktop/shubham/ai/llama.cpp
|
| 216 |
+
```
|
| 217 |
+
|
| 218 |
+
---
|
| 219 |
+
|
| 220 |
+
**Total Setup Time**: ~20-30 minutes (depending on download and conversion speeds)
|
| 221 |
+
**Final Model Size**: 4.7GB (quantized) vs 15GB (original) - 69% size reduction!
|