--- library_name: transformers license: mit base_model: openai-community/roberta-base-openai-detector tags: - generated_from_trainer metrics: - accuracy model-index: - name: AI_Human_Text_Detection_40K_roberta-base-openai-detector results: [] --- # AI_Human_Text_Detection_40K_roberta-base-openai-detector This model is a fine-tuned version of [openai-community/roberta-base-openai-detector](https://huggingface.co/openai-community/roberta-base-openai-detector) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1859 - Accuracy: 0.66 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1525 | 1.0 | 4500 | 2.9892 | 0.6142 | | 0.1047 | 2.0 | 9000 | 2.2166 | 0.706 | | 0.0524 | 3.0 | 13500 | 2.4719 | 0.691 | | 0.0205 | 4.0 | 18000 | 3.1859 | 0.66 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0