reformat, further clean
Browse files- convert_mvdream_to_diffusers.py +203 -53
- main.py +15 -8
- mvdream/attention.py +181 -62
- mvdream/models.py +249 -226
- mvdream/pipeline_mvdream.py +152 -70
- mvdream/util.py +10 -9
    	
        convert_mvdream_to_diffusers.py
    CHANGED
    
    | @@ -4,7 +4,7 @@ import argparse | |
| 4 | 
             
            import torch
         | 
| 5 | 
             
            import sys
         | 
| 6 |  | 
| 7 | 
            -
            sys.path.insert(0,  | 
| 8 |  | 
| 9 | 
             
            from diffusers.models import (
         | 
| 10 | 
             
                AutoencoderKL,
         | 
| @@ -15,20 +15,29 @@ from diffusers.utils import logging | |
| 15 | 
             
            from typing import Any
         | 
| 16 | 
             
            from accelerate import init_empty_weights
         | 
| 17 | 
             
            from accelerate.utils import set_module_tensor_to_device
         | 
| 18 | 
            -
            from mvdream.models import  | 
| 19 | 
             
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 20 | 
             
            from transformers import CLIPTokenizer, CLIPTextModel
         | 
| 21 |  | 
| 22 | 
             
            logger = logging.get_logger(__name__)
         | 
| 23 |  | 
| 24 |  | 
| 25 | 
            -
            def assign_to_checkpoint( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 | 
             
                """
         | 
| 27 | 
             
                This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
         | 
| 28 | 
             
                attention layers, and takes into account additional replacements that may arise.
         | 
| 29 | 
             
                Assigns the weights to the new checkpoint.
         | 
| 30 | 
             
                """
         | 
| 31 | 
            -
                assert isinstance( | 
|  | |
|  | |
| 32 |  | 
| 33 | 
             
                # Splits the attention layers into three variables.
         | 
| 34 | 
             
                if attention_paths_to_split is not None:
         | 
| @@ -41,7 +50,9 @@ def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_s | |
| 41 | 
             
                        assert config is not None
         | 
| 42 | 
             
                        num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
         | 
| 43 |  | 
| 44 | 
            -
                        old_tensor = old_tensor.reshape( | 
|  | |
|  | |
| 45 | 
             
                        query, key, value = old_tensor.split(channels // num_heads, dim=1)
         | 
| 46 |  | 
| 47 | 
             
                        checkpoint[path_map["query"]] = query.reshape(target_shape)
         | 
| @@ -52,7 +63,10 @@ def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_s | |
| 52 | 
             
                    new_path = path["new"]
         | 
| 53 |  | 
| 54 | 
             
                    # These have already been assigned
         | 
| 55 | 
            -
                    if  | 
|  | |
|  | |
|  | |
| 56 | 
             
                        continue
         | 
| 57 |  | 
| 58 | 
             
                    # Global renaming happens here
         | 
| @@ -65,7 +79,9 @@ def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_s | |
| 65 | 
             
                            new_path = new_path.replace(replacement["old"], replacement["new"])
         | 
| 66 |  | 
| 67 | 
             
                    # proj_attn.weight has to be converted from conv 1D to linear
         | 
| 68 | 
            -
                    is_attn_weight = "proj_attn.weight" in new_path or ( | 
|  | |
|  | |
| 69 | 
             
                    shape = old_checkpoint[path["old"]].shape
         | 
| 70 | 
             
                    if is_attn_weight and len(shape) == 3:
         | 
| 71 | 
             
                        checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
         | 
| @@ -122,17 +138,29 @@ def convert_ldm_vae_checkpoint(checkpoint, config): | |
| 122 |  | 
| 123 | 
             
                new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
         | 
| 124 | 
             
                new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
         | 
| 125 | 
            -
                new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[ | 
|  | |
|  | |
| 126 | 
             
                new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
         | 
| 127 | 
            -
                new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[ | 
| 128 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 129 |  | 
| 130 | 
             
                new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
         | 
| 131 | 
             
                new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
         | 
| 132 | 
            -
                new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[ | 
|  | |
|  | |
| 133 | 
             
                new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
         | 
| 134 | 
            -
                new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[ | 
| 135 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 136 |  | 
| 137 | 
             
                new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
         | 
| 138 | 
             
                new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
         | 
| @@ -140,23 +168,55 @@ def convert_ldm_vae_checkpoint(checkpoint, config): | |
| 140 | 
             
                new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
         | 
| 141 |  | 
| 142 | 
             
                # Retrieves the keys for the encoder down blocks only
         | 
| 143 | 
            -
                num_down_blocks = len( | 
| 144 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 145 |  | 
| 146 | 
             
                # Retrieves the keys for the decoder up blocks only
         | 
| 147 | 
            -
                num_up_blocks = len( | 
| 148 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 149 |  | 
| 150 | 
             
                for i in range(num_down_blocks):
         | 
| 151 | 
            -
                    resnets = [ | 
|  | |
|  | |
|  | |
|  | |
| 152 |  | 
| 153 | 
             
                    if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
         | 
| 154 | 
            -
                        new_checkpoint[ | 
| 155 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 156 |  | 
| 157 | 
             
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 158 | 
             
                    meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
         | 
| 159 | 
            -
                    assign_to_checkpoint( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 160 |  | 
| 161 | 
             
                mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
         | 
| 162 | 
             
                num_mid_res_blocks = 2
         | 
| @@ -165,25 +225,51 @@ def convert_ldm_vae_checkpoint(checkpoint, config): | |
| 165 |  | 
| 166 | 
             
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 167 | 
             
                    meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
         | 
| 168 | 
            -
                    assign_to_checkpoint( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 169 |  | 
| 170 | 
             
                mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
         | 
| 171 | 
             
                paths = renew_vae_attention_paths(mid_attentions)
         | 
| 172 | 
             
                meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
         | 
| 173 | 
            -
                assign_to_checkpoint( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 174 | 
             
                conv_attn_to_linear(new_checkpoint)
         | 
| 175 |  | 
| 176 | 
             
                for i in range(num_up_blocks):
         | 
| 177 | 
             
                    block_id = num_up_blocks - 1 - i
         | 
| 178 | 
            -
                    resnets = [ | 
|  | |
|  | |
|  | |
|  | |
| 179 |  | 
| 180 | 
             
                    if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
         | 
| 181 | 
            -
                        new_checkpoint[ | 
| 182 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 183 |  | 
| 184 | 
             
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 185 | 
             
                    meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
         | 
| 186 | 
            -
                    assign_to_checkpoint( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 187 |  | 
| 188 | 
             
                mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
         | 
| 189 | 
             
                num_mid_res_blocks = 2
         | 
| @@ -192,12 +278,24 @@ def convert_ldm_vae_checkpoint(checkpoint, config): | |
| 192 |  | 
| 193 | 
             
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 194 | 
             
                    meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
         | 
| 195 | 
            -
                    assign_to_checkpoint( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 196 |  | 
| 197 | 
             
                mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
         | 
| 198 | 
             
                paths = renew_vae_attention_paths(mid_attentions)
         | 
| 199 | 
             
                meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
         | 
| 200 | 
            -
                assign_to_checkpoint( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 201 | 
             
                conv_attn_to_linear(new_checkpoint)
         | 
| 202 | 
             
                return new_checkpoint
         | 
| 203 |  | 
| @@ -211,7 +309,9 @@ def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| 211 | 
             
                    new_item = old_item
         | 
| 212 |  | 
| 213 | 
             
                    new_item = new_item.replace("nin_shortcut", "conv_shortcut")
         | 
| 214 | 
            -
                    new_item = shave_segments( | 
|  | |
|  | |
| 215 |  | 
| 216 | 
             
                    mapping.append({"old": old_item, "new": new_item})
         | 
| 217 |  | 
| @@ -241,7 +341,9 @@ def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
| 241 | 
             
                    new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
         | 
| 242 | 
             
                    new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
         | 
| 243 |  | 
| 244 | 
            -
                    new_item = shave_segments( | 
|  | |
|  | |
| 245 |  | 
| 246 | 
             
                    mapping.append({"old": old_item, "new": new_item})
         | 
| 247 |  | 
| @@ -259,8 +361,12 @@ def conv_attn_to_linear(checkpoint): | |
| 259 | 
             
                        if checkpoint[key].ndim > 2:
         | 
| 260 | 
             
                            checkpoint[key] = checkpoint[key][:, :, 0]
         | 
| 261 |  | 
|  | |
| 262 | 
             
            def create_unet_config(original_config) -> Any:
         | 
| 263 | 
            -
                return OmegaConf.to_container( | 
|  | |
|  | |
|  | |
| 264 |  | 
| 265 | 
             
            def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device):
         | 
| 266 | 
             
                checkpoint = torch.load(checkpoint_path, map_location=device)
         | 
| @@ -271,7 +377,9 @@ def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, de | |
| 271 | 
             
                # print(f"Original Config: {original_config}")
         | 
| 272 | 
             
                prediction_type = "epsilon"
         | 
| 273 | 
             
                image_size = 256
         | 
| 274 | 
            -
                num_train_timesteps =  | 
|  | |
|  | |
| 275 | 
             
                beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
         | 
| 276 | 
             
                beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
         | 
| 277 | 
             
                scheduler = DDIMScheduler(
         | 
| @@ -297,10 +405,16 @@ def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, de | |
| 297 | 
             
                # )
         | 
| 298 | 
             
                # print(f"Unet Config: {original_config.model.params.unet_config.params}")
         | 
| 299 | 
             
                unet_config = create_unet_config(original_config)
         | 
| 300 | 
            -
                unet | 
| 301 | 
             
                unet.register_to_config(**unet_config)
         | 
| 302 | 
             
                # print(f"Unet State Dict: {unet.state_dict().keys()}")
         | 
| 303 | 
            -
                unet.load_state_dict( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 304 | 
             
                for param_name, param in unet.state_dict().items():
         | 
| 305 | 
             
                    set_module_tensor_to_device(unet, param_name, device=device, value=param)
         | 
| 306 |  | 
| @@ -308,10 +422,14 @@ def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, de | |
| 308 | 
             
                vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
         | 
| 309 | 
             
                converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
         | 
| 310 |  | 
| 311 | 
            -
                if ( | 
|  | |
|  | |
|  | |
|  | |
| 312 | 
             
                    vae_scaling_factor = original_config.model.params.scale_factor
         | 
| 313 | 
             
                else:
         | 
| 314 | 
            -
                    vae_scaling_factor = 0.18215 | 
| 315 |  | 
| 316 | 
             
                vae_config["scaling_factor"] = vae_scaling_factor
         | 
| 317 |  | 
| @@ -322,13 +440,19 @@ def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, de | |
| 322 | 
             
                    set_module_tensor_to_device(vae, param_name, device=device, value=param)
         | 
| 323 |  | 
| 324 | 
             
                if original_config.model.params.unet_config.params.context_dim == 768:
         | 
| 325 | 
            -
                    tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained( | 
| 326 | 
            -
             | 
|  | |
|  | |
| 327 | 
             
                elif original_config.model.params.unet_config.params.context_dim == 1024:
         | 
| 328 | 
            -
                    tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained( | 
| 329 | 
            -
             | 
|  | |
|  | |
| 330 | 
             
                else:
         | 
| 331 | 
            -
                    raise ValueError( | 
|  | |
|  | |
| 332 |  | 
| 333 | 
             
                pipe = MVDreamStableDiffusionPipeline(
         | 
| 334 | 
             
                    vae=vae,
         | 
| @@ -344,7 +468,13 @@ def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, de | |
| 344 | 
             
            if __name__ == "__main__":
         | 
| 345 | 
             
                parser = argparse.ArgumentParser()
         | 
| 346 |  | 
| 347 | 
            -
                parser.add_argument( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 348 | 
             
                parser.add_argument(
         | 
| 349 | 
             
                    "--original_config_file",
         | 
| 350 | 
             
                    default=None,
         | 
| @@ -356,13 +486,33 @@ if __name__ == "__main__": | |
| 356 | 
             
                    action="store_true",
         | 
| 357 | 
             
                    help="Whether to store pipeline in safetensors format or not.",
         | 
| 358 | 
             
                )
         | 
| 359 | 
            -
                parser.add_argument( | 
| 360 | 
            -
             | 
| 361 | 
            -
                 | 
| 362 | 
            -
                parser.add_argument( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 363 | 
             
                args = parser.parse_args()
         | 
| 364 | 
            -
             | 
| 365 | 
            -
                args.device = torch.device( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 366 |  | 
| 367 | 
             
                pipe = convert_from_original_mvdream_ckpt(
         | 
| 368 | 
             
                    checkpoint_path=args.checkpoint_path,
         | 
| @@ -375,7 +525,7 @@ if __name__ == "__main__": | |
| 375 |  | 
| 376 | 
             
                print(f"Saving pipeline to {args.dump_path}...")
         | 
| 377 | 
             
                pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
         | 
| 378 | 
            -
             | 
| 379 | 
             
                if args.test:
         | 
| 380 | 
             
                    try:
         | 
| 381 | 
             
                        print(f"Testing each subcomponent of the pipeline...")
         | 
| @@ -388,10 +538,10 @@ if __name__ == "__main__": | |
| 388 | 
             
                            device=args.device,
         | 
| 389 | 
             
                        )
         | 
| 390 | 
             
                        for i, image in enumerate(images):
         | 
| 391 | 
            -
                            image.save(f"image_{i}.png") | 
| 392 |  | 
| 393 | 
             
                        print(f"Testing entire pipeline...")
         | 
| 394 | 
            -
                        loaded_pipe: MVDreamStableDiffusionPipeline = MVDreamStableDiffusionPipeline.from_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 
| 395 | 
             
                        images = loaded_pipe(
         | 
| 396 | 
             
                            prompt="Head of Hatsune Miku",
         | 
| 397 | 
             
                            negative_prompt="painting, bad quality, flat",
         | 
| @@ -401,7 +551,7 @@ if __name__ == "__main__": | |
| 401 | 
             
                            device=args.device,
         | 
| 402 | 
             
                        )
         | 
| 403 | 
             
                        for i, image in enumerate(images):
         | 
| 404 | 
            -
                            image.save(f"image_{i}.png") | 
| 405 | 
             
                    except Exception as e:
         | 
| 406 | 
             
                        print(f"Failed to test inference: {e}")
         | 
| 407 | 
             
                        raise e from e
         | 
|  | |
| 4 | 
             
            import torch
         | 
| 5 | 
             
            import sys
         | 
| 6 |  | 
| 7 | 
            +
            sys.path.insert(0, ".")
         | 
| 8 |  | 
| 9 | 
             
            from diffusers.models import (
         | 
| 10 | 
             
                AutoencoderKL,
         | 
|  | |
| 15 | 
             
            from typing import Any
         | 
| 16 | 
             
            from accelerate import init_empty_weights
         | 
| 17 | 
             
            from accelerate.utils import set_module_tensor_to_device
         | 
| 18 | 
            +
            from mvdream.models import MultiViewUNetModel
         | 
| 19 | 
             
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 20 | 
             
            from transformers import CLIPTokenizer, CLIPTextModel
         | 
| 21 |  | 
| 22 | 
             
            logger = logging.get_logger(__name__)
         | 
| 23 |  | 
| 24 |  | 
| 25 | 
            +
            def assign_to_checkpoint(
         | 
| 26 | 
            +
                paths,
         | 
| 27 | 
            +
                checkpoint,
         | 
| 28 | 
            +
                old_checkpoint,
         | 
| 29 | 
            +
                attention_paths_to_split=None,
         | 
| 30 | 
            +
                additional_replacements=None,
         | 
| 31 | 
            +
                config=None,
         | 
| 32 | 
            +
            ):
         | 
| 33 | 
             
                """
         | 
| 34 | 
             
                This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
         | 
| 35 | 
             
                attention layers, and takes into account additional replacements that may arise.
         | 
| 36 | 
             
                Assigns the weights to the new checkpoint.
         | 
| 37 | 
             
                """
         | 
| 38 | 
            +
                assert isinstance(
         | 
| 39 | 
            +
                    paths, list
         | 
| 40 | 
            +
                ), "Paths should be a list of dicts containing 'old' and 'new' keys."
         | 
| 41 |  | 
| 42 | 
             
                # Splits the attention layers into three variables.
         | 
| 43 | 
             
                if attention_paths_to_split is not None:
         | 
|  | |
| 50 | 
             
                        assert config is not None
         | 
| 51 | 
             
                        num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
         | 
| 52 |  | 
| 53 | 
            +
                        old_tensor = old_tensor.reshape(
         | 
| 54 | 
            +
                            (num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
         | 
| 55 | 
            +
                        )
         | 
| 56 | 
             
                        query, key, value = old_tensor.split(channels // num_heads, dim=1)
         | 
| 57 |  | 
| 58 | 
             
                        checkpoint[path_map["query"]] = query.reshape(target_shape)
         | 
|  | |
| 63 | 
             
                    new_path = path["new"]
         | 
| 64 |  | 
| 65 | 
             
                    # These have already been assigned
         | 
| 66 | 
            +
                    if (
         | 
| 67 | 
            +
                        attention_paths_to_split is not None
         | 
| 68 | 
            +
                        and new_path in attention_paths_to_split
         | 
| 69 | 
            +
                    ):
         | 
| 70 | 
             
                        continue
         | 
| 71 |  | 
| 72 | 
             
                    # Global renaming happens here
         | 
|  | |
| 79 | 
             
                            new_path = new_path.replace(replacement["old"], replacement["new"])
         | 
| 80 |  | 
| 81 | 
             
                    # proj_attn.weight has to be converted from conv 1D to linear
         | 
| 82 | 
            +
                    is_attn_weight = "proj_attn.weight" in new_path or (
         | 
| 83 | 
            +
                        "attentions" in new_path and "to_" in new_path
         | 
| 84 | 
            +
                    )
         | 
| 85 | 
             
                    shape = old_checkpoint[path["old"]].shape
         | 
| 86 | 
             
                    if is_attn_weight and len(shape) == 3:
         | 
| 87 | 
             
                        checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
         | 
|  | |
| 138 |  | 
| 139 | 
             
                new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
         | 
| 140 | 
             
                new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
         | 
| 141 | 
            +
                new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
         | 
| 142 | 
            +
                    "encoder.conv_out.weight"
         | 
| 143 | 
            +
                ]
         | 
| 144 | 
             
                new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
         | 
| 145 | 
            +
                new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
         | 
| 146 | 
            +
                    "encoder.norm_out.weight"
         | 
| 147 | 
            +
                ]
         | 
| 148 | 
            +
                new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
         | 
| 149 | 
            +
                    "encoder.norm_out.bias"
         | 
| 150 | 
            +
                ]
         | 
| 151 |  | 
| 152 | 
             
                new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
         | 
| 153 | 
             
                new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
         | 
| 154 | 
            +
                new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
         | 
| 155 | 
            +
                    "decoder.conv_out.weight"
         | 
| 156 | 
            +
                ]
         | 
| 157 | 
             
                new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
         | 
| 158 | 
            +
                new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
         | 
| 159 | 
            +
                    "decoder.norm_out.weight"
         | 
| 160 | 
            +
                ]
         | 
| 161 | 
            +
                new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
         | 
| 162 | 
            +
                    "decoder.norm_out.bias"
         | 
| 163 | 
            +
                ]
         | 
| 164 |  | 
| 165 | 
             
                new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
         | 
| 166 | 
             
                new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
         | 
|  | |
| 168 | 
             
                new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
         | 
| 169 |  | 
| 170 | 
             
                # Retrieves the keys for the encoder down blocks only
         | 
| 171 | 
            +
                num_down_blocks = len(
         | 
| 172 | 
            +
                    {
         | 
| 173 | 
            +
                        ".".join(layer.split(".")[:3])
         | 
| 174 | 
            +
                        for layer in vae_state_dict
         | 
| 175 | 
            +
                        if "encoder.down" in layer
         | 
| 176 | 
            +
                    }
         | 
| 177 | 
            +
                )
         | 
| 178 | 
            +
                down_blocks = {
         | 
| 179 | 
            +
                    layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
         | 
| 180 | 
            +
                    for layer_id in range(num_down_blocks)
         | 
| 181 | 
            +
                }
         | 
| 182 |  | 
| 183 | 
             
                # Retrieves the keys for the decoder up blocks only
         | 
| 184 | 
            +
                num_up_blocks = len(
         | 
| 185 | 
            +
                    {
         | 
| 186 | 
            +
                        ".".join(layer.split(".")[:3])
         | 
| 187 | 
            +
                        for layer in vae_state_dict
         | 
| 188 | 
            +
                        if "decoder.up" in layer
         | 
| 189 | 
            +
                    }
         | 
| 190 | 
            +
                )
         | 
| 191 | 
            +
                up_blocks = {
         | 
| 192 | 
            +
                    layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
         | 
| 193 | 
            +
                    for layer_id in range(num_up_blocks)
         | 
| 194 | 
            +
                }
         | 
| 195 |  | 
| 196 | 
             
                for i in range(num_down_blocks):
         | 
| 197 | 
            +
                    resnets = [
         | 
| 198 | 
            +
                        key
         | 
| 199 | 
            +
                        for key in down_blocks[i]
         | 
| 200 | 
            +
                        if f"down.{i}" in key and f"down.{i}.downsample" not in key
         | 
| 201 | 
            +
                    ]
         | 
| 202 |  | 
| 203 | 
             
                    if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
         | 
| 204 | 
            +
                        new_checkpoint[
         | 
| 205 | 
            +
                            f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
         | 
| 206 | 
            +
                        ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
         | 
| 207 | 
            +
                        new_checkpoint[
         | 
| 208 | 
            +
                            f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
         | 
| 209 | 
            +
                        ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
         | 
| 210 |  | 
| 211 | 
             
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 212 | 
             
                    meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
         | 
| 213 | 
            +
                    assign_to_checkpoint(
         | 
| 214 | 
            +
                        paths,
         | 
| 215 | 
            +
                        new_checkpoint,
         | 
| 216 | 
            +
                        vae_state_dict,
         | 
| 217 | 
            +
                        additional_replacements=[meta_path],
         | 
| 218 | 
            +
                        config=config,
         | 
| 219 | 
            +
                    )
         | 
| 220 |  | 
| 221 | 
             
                mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
         | 
| 222 | 
             
                num_mid_res_blocks = 2
         | 
|  | |
| 225 |  | 
| 226 | 
             
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 227 | 
             
                    meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
         | 
| 228 | 
            +
                    assign_to_checkpoint(
         | 
| 229 | 
            +
                        paths,
         | 
| 230 | 
            +
                        new_checkpoint,
         | 
| 231 | 
            +
                        vae_state_dict,
         | 
| 232 | 
            +
                        additional_replacements=[meta_path],
         | 
| 233 | 
            +
                        config=config,
         | 
| 234 | 
            +
                    )
         | 
| 235 |  | 
| 236 | 
             
                mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
         | 
| 237 | 
             
                paths = renew_vae_attention_paths(mid_attentions)
         | 
| 238 | 
             
                meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
         | 
| 239 | 
            +
                assign_to_checkpoint(
         | 
| 240 | 
            +
                    paths,
         | 
| 241 | 
            +
                    new_checkpoint,
         | 
| 242 | 
            +
                    vae_state_dict,
         | 
| 243 | 
            +
                    additional_replacements=[meta_path],
         | 
| 244 | 
            +
                    config=config,
         | 
| 245 | 
            +
                )
         | 
| 246 | 
             
                conv_attn_to_linear(new_checkpoint)
         | 
| 247 |  | 
| 248 | 
             
                for i in range(num_up_blocks):
         | 
| 249 | 
             
                    block_id = num_up_blocks - 1 - i
         | 
| 250 | 
            +
                    resnets = [
         | 
| 251 | 
            +
                        key
         | 
| 252 | 
            +
                        for key in up_blocks[block_id]
         | 
| 253 | 
            +
                        if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
         | 
| 254 | 
            +
                    ]
         | 
| 255 |  | 
| 256 | 
             
                    if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
         | 
| 257 | 
            +
                        new_checkpoint[
         | 
| 258 | 
            +
                            f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
         | 
| 259 | 
            +
                        ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
         | 
| 260 | 
            +
                        new_checkpoint[
         | 
| 261 | 
            +
                            f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
         | 
| 262 | 
            +
                        ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
         | 
| 263 |  | 
| 264 | 
             
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 265 | 
             
                    meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
         | 
| 266 | 
            +
                    assign_to_checkpoint(
         | 
| 267 | 
            +
                        paths,
         | 
| 268 | 
            +
                        new_checkpoint,
         | 
| 269 | 
            +
                        vae_state_dict,
         | 
| 270 | 
            +
                        additional_replacements=[meta_path],
         | 
| 271 | 
            +
                        config=config,
         | 
| 272 | 
            +
                    )
         | 
| 273 |  | 
| 274 | 
             
                mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
         | 
| 275 | 
             
                num_mid_res_blocks = 2
         | 
|  | |
| 278 |  | 
| 279 | 
             
                    paths = renew_vae_resnet_paths(resnets)
         | 
| 280 | 
             
                    meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
         | 
| 281 | 
            +
                    assign_to_checkpoint(
         | 
| 282 | 
            +
                        paths,
         | 
| 283 | 
            +
                        new_checkpoint,
         | 
| 284 | 
            +
                        vae_state_dict,
         | 
| 285 | 
            +
                        additional_replacements=[meta_path],
         | 
| 286 | 
            +
                        config=config,
         | 
| 287 | 
            +
                    )
         | 
| 288 |  | 
| 289 | 
             
                mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
         | 
| 290 | 
             
                paths = renew_vae_attention_paths(mid_attentions)
         | 
| 291 | 
             
                meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
         | 
| 292 | 
            +
                assign_to_checkpoint(
         | 
| 293 | 
            +
                    paths,
         | 
| 294 | 
            +
                    new_checkpoint,
         | 
| 295 | 
            +
                    vae_state_dict,
         | 
| 296 | 
            +
                    additional_replacements=[meta_path],
         | 
| 297 | 
            +
                    config=config,
         | 
| 298 | 
            +
                )
         | 
| 299 | 
             
                conv_attn_to_linear(new_checkpoint)
         | 
| 300 | 
             
                return new_checkpoint
         | 
| 301 |  | 
|  | |
| 309 | 
             
                    new_item = old_item
         | 
| 310 |  | 
| 311 | 
             
                    new_item = new_item.replace("nin_shortcut", "conv_shortcut")
         | 
| 312 | 
            +
                    new_item = shave_segments(
         | 
| 313 | 
            +
                        new_item, n_shave_prefix_segments=n_shave_prefix_segments
         | 
| 314 | 
            +
                    )
         | 
| 315 |  | 
| 316 | 
             
                    mapping.append({"old": old_item, "new": new_item})
         | 
| 317 |  | 
|  | |
| 341 | 
             
                    new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
         | 
| 342 | 
             
                    new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
         | 
| 343 |  | 
| 344 | 
            +
                    new_item = shave_segments(
         | 
| 345 | 
            +
                        new_item, n_shave_prefix_segments=n_shave_prefix_segments
         | 
| 346 | 
            +
                    )
         | 
| 347 |  | 
| 348 | 
             
                    mapping.append({"old": old_item, "new": new_item})
         | 
| 349 |  | 
|  | |
| 361 | 
             
                        if checkpoint[key].ndim > 2:
         | 
| 362 | 
             
                            checkpoint[key] = checkpoint[key][:, :, 0]
         | 
| 363 |  | 
| 364 | 
            +
             | 
| 365 | 
             
            def create_unet_config(original_config) -> Any:
         | 
| 366 | 
            +
                return OmegaConf.to_container(
         | 
| 367 | 
            +
                    original_config.model.params.unet_config.params, resolve=True
         | 
| 368 | 
            +
                )
         | 
| 369 | 
            +
             | 
| 370 |  | 
| 371 | 
             
            def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device):
         | 
| 372 | 
             
                checkpoint = torch.load(checkpoint_path, map_location=device)
         | 
|  | |
| 377 | 
             
                # print(f"Original Config: {original_config}")
         | 
| 378 | 
             
                prediction_type = "epsilon"
         | 
| 379 | 
             
                image_size = 256
         | 
| 380 | 
            +
                num_train_timesteps = (
         | 
| 381 | 
            +
                    getattr(original_config.model.params, "timesteps", None) or 1000
         | 
| 382 | 
            +
                )
         | 
| 383 | 
             
                beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
         | 
| 384 | 
             
                beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
         | 
| 385 | 
             
                scheduler = DDIMScheduler(
         | 
|  | |
| 405 | 
             
                # )
         | 
| 406 | 
             
                # print(f"Unet Config: {original_config.model.params.unet_config.params}")
         | 
| 407 | 
             
                unet_config = create_unet_config(original_config)
         | 
| 408 | 
            +
                unet = MultiViewUNetModel(**unet_config)
         | 
| 409 | 
             
                unet.register_to_config(**unet_config)
         | 
| 410 | 
             
                # print(f"Unet State Dict: {unet.state_dict().keys()}")
         | 
| 411 | 
            +
                unet.load_state_dict(
         | 
| 412 | 
            +
                    {
         | 
| 413 | 
            +
                        key.replace("model.diffusion_model.", ""): value
         | 
| 414 | 
            +
                        for key, value in checkpoint.items()
         | 
| 415 | 
            +
                        if key.replace("model.diffusion_model.", "") in unet.state_dict()
         | 
| 416 | 
            +
                    }
         | 
| 417 | 
            +
                )
         | 
| 418 | 
             
                for param_name, param in unet.state_dict().items():
         | 
| 419 | 
             
                    set_module_tensor_to_device(unet, param_name, device=device, value=param)
         | 
| 420 |  | 
|  | |
| 422 | 
             
                vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
         | 
| 423 | 
             
                converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
         | 
| 424 |  | 
| 425 | 
            +
                if (
         | 
| 426 | 
            +
                    "model" in original_config
         | 
| 427 | 
            +
                    and "params" in original_config.model
         | 
| 428 | 
            +
                    and "scale_factor" in original_config.model.params
         | 
| 429 | 
            +
                ):
         | 
| 430 | 
             
                    vae_scaling_factor = original_config.model.params.scale_factor
         | 
| 431 | 
             
                else:
         | 
| 432 | 
            +
                    vae_scaling_factor = 0.18215  # default SD scaling factor
         | 
| 433 |  | 
| 434 | 
             
                vae_config["scaling_factor"] = vae_scaling_factor
         | 
| 435 |  | 
|  | |
| 440 | 
             
                    set_module_tensor_to_device(vae, param_name, device=device, value=param)
         | 
| 441 |  | 
| 442 | 
             
                if original_config.model.params.unet_config.params.context_dim == 768:
         | 
| 443 | 
            +
                    tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
         | 
| 444 | 
            +
                        "openai/clip-vit-large-patch14"
         | 
| 445 | 
            +
                    )
         | 
| 446 | 
            +
                    text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device=device)  # type: ignore
         | 
| 447 | 
             
                elif original_config.model.params.unet_config.params.context_dim == 1024:
         | 
| 448 | 
            +
                    tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
         | 
| 449 | 
            +
                        "stabilityai/stable-diffusion-2-1", subfolder="tokenizer"
         | 
| 450 | 
            +
                    )
         | 
| 451 | 
            +
                    text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device)  # type: ignore
         | 
| 452 | 
             
                else:
         | 
| 453 | 
            +
                    raise ValueError(
         | 
| 454 | 
            +
                        f"Unknown context_dim: {original_config.model.paams.unet_config.params.context_dim}"
         | 
| 455 | 
            +
                    )
         | 
| 456 |  | 
| 457 | 
             
                pipe = MVDreamStableDiffusionPipeline(
         | 
| 458 | 
             
                    vae=vae,
         | 
|  | |
| 468 | 
             
            if __name__ == "__main__":
         | 
| 469 | 
             
                parser = argparse.ArgumentParser()
         | 
| 470 |  | 
| 471 | 
            +
                parser.add_argument(
         | 
| 472 | 
            +
                    "--checkpoint_path",
         | 
| 473 | 
            +
                    default=None,
         | 
| 474 | 
            +
                    type=str,
         | 
| 475 | 
            +
                    required=True,
         | 
| 476 | 
            +
                    help="Path to the checkpoint to convert.",
         | 
| 477 | 
            +
                )
         | 
| 478 | 
             
                parser.add_argument(
         | 
| 479 | 
             
                    "--original_config_file",
         | 
| 480 | 
             
                    default=None,
         | 
|  | |
| 486 | 
             
                    action="store_true",
         | 
| 487 | 
             
                    help="Whether to store pipeline in safetensors format or not.",
         | 
| 488 | 
             
                )
         | 
| 489 | 
            +
                parser.add_argument(
         | 
| 490 | 
            +
                    "--half", action="store_true", help="Save weights in half precision."
         | 
| 491 | 
            +
                )
         | 
| 492 | 
            +
                parser.add_argument(
         | 
| 493 | 
            +
                    "--test",
         | 
| 494 | 
            +
                    action="store_true",
         | 
| 495 | 
            +
                    help="Whether to test inference after convertion.",
         | 
| 496 | 
            +
                )
         | 
| 497 | 
            +
                parser.add_argument(
         | 
| 498 | 
            +
                    "--dump_path",
         | 
| 499 | 
            +
                    default=None,
         | 
| 500 | 
            +
                    type=str,
         | 
| 501 | 
            +
                    required=True,
         | 
| 502 | 
            +
                    help="Path to the output model.",
         | 
| 503 | 
            +
                )
         | 
| 504 | 
            +
                parser.add_argument(
         | 
| 505 | 
            +
                    "--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
         | 
| 506 | 
            +
                )
         | 
| 507 | 
             
                args = parser.parse_args()
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                args.device = torch.device(
         | 
| 510 | 
            +
                    args.device
         | 
| 511 | 
            +
                    if args.device is not None
         | 
| 512 | 
            +
                    else "cuda"
         | 
| 513 | 
            +
                    if torch.cuda.is_available()
         | 
| 514 | 
            +
                    else "cpu"
         | 
| 515 | 
            +
                )
         | 
| 516 |  | 
| 517 | 
             
                pipe = convert_from_original_mvdream_ckpt(
         | 
| 518 | 
             
                    checkpoint_path=args.checkpoint_path,
         | 
|  | |
| 525 |  | 
| 526 | 
             
                print(f"Saving pipeline to {args.dump_path}...")
         | 
| 527 | 
             
                pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
         | 
| 528 | 
            +
             | 
| 529 | 
             
                if args.test:
         | 
| 530 | 
             
                    try:
         | 
| 531 | 
             
                        print(f"Testing each subcomponent of the pipeline...")
         | 
|  | |
| 538 | 
             
                            device=args.device,
         | 
| 539 | 
             
                        )
         | 
| 540 | 
             
                        for i, image in enumerate(images):
         | 
| 541 | 
            +
                            image.save(f"image_{i}.png")  # type: ignore
         | 
| 542 |  | 
| 543 | 
             
                        print(f"Testing entire pipeline...")
         | 
| 544 | 
            +
                        loaded_pipe: MVDreamStableDiffusionPipeline = MVDreamStableDiffusionPipeline.from_pretrained(args.dump_path, safe_serialization=args.to_safetensors)  # type: ignore
         | 
| 545 | 
             
                        images = loaded_pipe(
         | 
| 546 | 
             
                            prompt="Head of Hatsune Miku",
         | 
| 547 | 
             
                            negative_prompt="painting, bad quality, flat",
         | 
|  | |
| 551 | 
             
                            device=args.device,
         | 
| 552 | 
             
                        )
         | 
| 553 | 
             
                        for i, image in enumerate(images):
         | 
| 554 | 
            +
                            image.save(f"image_{i}.png")  # type: ignore
         | 
| 555 | 
             
                    except Exception as e:
         | 
| 556 | 
             
                        print(f"Failed to test inference: {e}")
         | 
| 557 | 
             
                        raise e from e
         | 
    	
        main.py
    CHANGED
    
    | @@ -4,18 +4,25 @@ import numpy as np | |
| 4 | 
             
            import argparse
         | 
| 5 | 
             
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 6 |  | 
| 7 | 
            -
            pipe = MVDreamStableDiffusionPipeline.from_pretrained( | 
|  | |
|  | |
|  | |
|  | |
| 8 | 
             
            pipe = pipe.to("cuda")
         | 
| 9 |  | 
| 10 |  | 
| 11 | 
            -
            parser = argparse.ArgumentParser(description= | 
| 12 | 
            -
            parser.add_argument( | 
| 13 | 
             
            args = parser.parse_args()
         | 
| 14 |  | 
| 15 | 
             
            while True:
         | 
| 16 | 
             
                image = pipe(args.prompt)
         | 
| 17 | 
            -
                grid = np.concatenate( | 
| 18 | 
            -
                     | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
|  | |
|  | |
|  | 
|  | |
| 4 | 
             
            import argparse
         | 
| 5 | 
             
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 6 |  | 
| 7 | 
            +
            pipe = MVDreamStableDiffusionPipeline.from_pretrained(
         | 
| 8 | 
            +
                # "./weights", # local weights
         | 
| 9 | 
            +
                "ashawkey/mvdream-sd2.1-diffusers",
         | 
| 10 | 
            +
                torch_dtype=torch.float16
         | 
| 11 | 
            +
            )
         | 
| 12 | 
             
            pipe = pipe.to("cuda")
         | 
| 13 |  | 
| 14 |  | 
| 15 | 
            +
            parser = argparse.ArgumentParser(description="MVDream")
         | 
| 16 | 
            +
            parser.add_argument("prompt", type=str, default="a cute owl 3d model")
         | 
| 17 | 
             
            args = parser.parse_args()
         | 
| 18 |  | 
| 19 | 
             
            while True:
         | 
| 20 | 
             
                image = pipe(args.prompt)
         | 
| 21 | 
            +
                grid = np.concatenate(
         | 
| 22 | 
            +
                    [
         | 
| 23 | 
            +
                        np.concatenate([image[0], image[2]], axis=0),
         | 
| 24 | 
            +
                        np.concatenate([image[1], image[3]], axis=0),
         | 
| 25 | 
            +
                    ],
         | 
| 26 | 
            +
                    axis=1,
         | 
| 27 | 
            +
                )
         | 
| 28 | 
            +
                kiui.vis.plot_image(grid)
         | 
    	
        mvdream/attention.py
    CHANGED
    
    | @@ -12,8 +12,9 @@ from typing import Optional, Any | |
| 12 | 
             
            from .util import checkpoint
         | 
| 13 |  | 
| 14 | 
             
            try:
         | 
| 15 | 
            -
                import xformers | 
| 16 | 
            -
                import xformers.ops | 
|  | |
| 17 | 
             
                XFORMERS_IS_AVAILBLE = True
         | 
| 18 | 
             
            except:
         | 
| 19 | 
             
                XFORMERS_IS_AVAILBLE = False
         | 
| @@ -47,7 +48,6 @@ def init_(tensor): | |
| 47 |  | 
| 48 | 
             
            # feedforward
         | 
| 49 | 
             
            class GEGLU(nn.Module):
         | 
| 50 | 
            -
             | 
| 51 | 
             
                def __init__(self, dim_in, dim_out):
         | 
| 52 | 
             
                    super().__init__()
         | 
| 53 | 
             
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| @@ -58,14 +58,19 @@ class GEGLU(nn.Module): | |
| 58 |  | 
| 59 |  | 
| 60 | 
             
            class FeedForward(nn.Module):
         | 
| 61 | 
            -
             | 
| 62 | 
            -
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
         | 
| 63 | 
             
                    super().__init__()
         | 
| 64 | 
             
                    inner_dim = int(dim * mult)
         | 
| 65 | 
             
                    dim_out = default(dim_out, dim)
         | 
| 66 | 
            -
                    project_in =  | 
|  | |
|  | |
|  | |
|  | |
| 67 |  | 
| 68 | 
            -
                    self.net = nn.Sequential( | 
|  | |
|  | |
| 69 |  | 
| 70 | 
             
                def forward(self, x):
         | 
| 71 | 
             
                    return self.net(x)
         | 
| @@ -81,20 +86,29 @@ def zero_module(module): | |
| 81 |  | 
| 82 |  | 
| 83 | 
             
            def Normalize(in_channels):
         | 
| 84 | 
            -
                return torch.nn.GroupNorm( | 
|  | |
|  | |
| 85 |  | 
| 86 |  | 
| 87 | 
             
            class SpatialSelfAttention(nn.Module):
         | 
| 88 | 
            -
             | 
| 89 | 
             
                def __init__(self, in_channels):
         | 
| 90 | 
             
                    super().__init__()
         | 
| 91 | 
             
                    self.in_channels = in_channels
         | 
| 92 |  | 
| 93 | 
             
                    self.norm = Normalize(in_channels)
         | 
| 94 | 
            -
                    self.q = torch.nn.Conv2d( | 
| 95 | 
            -
             | 
| 96 | 
            -
                     | 
| 97 | 
            -
                    self. | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 98 |  | 
| 99 | 
             
                def forward(self, x):
         | 
| 100 | 
             
                    h_ = x
         | 
| @@ -105,26 +119,25 @@ class SpatialSelfAttention(nn.Module): | |
| 105 |  | 
| 106 | 
             
                    # compute attention
         | 
| 107 | 
             
                    b, c, h, w = q.shape
         | 
| 108 | 
            -
                    q = rearrange(q,  | 
| 109 | 
            -
                    k = rearrange(k,  | 
| 110 | 
            -
                    w_ = torch.einsum( | 
| 111 |  | 
| 112 | 
            -
                    w_ = w_ * (int(c)**(-0.5))
         | 
| 113 | 
             
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         | 
| 114 |  | 
| 115 | 
             
                    # attend to values
         | 
| 116 | 
            -
                    v = rearrange(v,  | 
| 117 | 
            -
                    w_ = rearrange(w_,  | 
| 118 | 
            -
                    h_ = torch.einsum( | 
| 119 | 
            -
                    h_ = rearrange(h_,  | 
| 120 | 
             
                    h_ = self.proj_out(h_)
         | 
| 121 |  | 
| 122 | 
             
                    return x + h_
         | 
| 123 |  | 
| 124 |  | 
| 125 | 
             
            class CrossAttention(nn.Module):
         | 
| 126 | 
            -
             | 
| 127 | 
            -
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
         | 
| 128 | 
             
                    super().__init__()
         | 
| 129 | 
             
                    inner_dim = dim_head * heads
         | 
| 130 | 
             
                    context_dim = default(context_dim, query_dim)
         | 
| @@ -136,7 +149,9 @@ class CrossAttention(nn.Module): | |
| 136 | 
             
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 137 | 
             
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 138 |  | 
| 139 | 
            -
                    self.to_out = nn.Sequential( | 
|  | |
|  | |
| 140 |  | 
| 141 | 
             
                def forward(self, x, context=None, mask=None):
         | 
| 142 | 
             
                    h = self.heads
         | 
| @@ -146,29 +161,29 @@ class CrossAttention(nn.Module): | |
| 146 | 
             
                    k = self.to_k(context)
         | 
| 147 | 
             
                    v = self.to_v(context)
         | 
| 148 |  | 
| 149 | 
            -
                    q, k, v = map(lambda t: rearrange(t,  | 
| 150 |  | 
| 151 | 
             
                    # force cast to fp32 to avoid overflowing
         | 
| 152 | 
             
                    if _ATTN_PRECISION == "fp32":
         | 
| 153 | 
            -
                        with autocast(enabled=False, device_type= | 
| 154 | 
             
                            q, k = q.float(), k.float()
         | 
| 155 | 
            -
                            sim = einsum( | 
| 156 | 
             
                    else:
         | 
| 157 | 
            -
                        sim = einsum( | 
| 158 |  | 
| 159 | 
             
                    del q, k
         | 
| 160 |  | 
| 161 | 
             
                    if mask is not None:
         | 
| 162 | 
            -
                        mask = rearrange(mask,  | 
| 163 | 
             
                        max_neg_value = -torch.finfo(sim.dtype).max
         | 
| 164 | 
            -
                        mask = repeat(mask,  | 
| 165 | 
             
                        sim.masked_fill_(~mask, max_neg_value)
         | 
| 166 |  | 
| 167 | 
             
                    # attention, what we cannot get enough of
         | 
| 168 | 
             
                    sim = sim.softmax(dim=-1)
         | 
| 169 |  | 
| 170 | 
            -
                    out = einsum( | 
| 171 | 
            -
                    out = rearrange(out,  | 
| 172 | 
             
                    return self.to_out(out)
         | 
| 173 |  | 
| 174 |  | 
| @@ -187,7 +202,9 @@ class MemoryEfficientCrossAttention(nn.Module): | |
| 187 | 
             
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 188 | 
             
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 189 |  | 
| 190 | 
            -
                    self.to_out = nn.Sequential( | 
|  | |
|  | |
| 191 | 
             
                    self.attention_op: Optional[Any] = None
         | 
| 192 |  | 
| 193 | 
             
                def forward(self, x, context=None, mask=None):
         | 
| @@ -198,44 +215,84 @@ class MemoryEfficientCrossAttention(nn.Module): | |
| 198 |  | 
| 199 | 
             
                    b, _, _ = q.shape
         | 
| 200 | 
             
                    q, k, v = map(
         | 
| 201 | 
            -
                        lambda t: t.unsqueeze(3) | 
|  | |
|  | |
|  | |
|  | |
| 202 | 
             
                        (q, k, v),
         | 
| 203 | 
             
                    )
         | 
| 204 |  | 
| 205 | 
             
                    # actually compute the attention, what we cannot get enough of
         | 
| 206 | 
            -
                    out = xformers.ops.memory_efficient_attention( | 
|  | |
|  | |
| 207 |  | 
| 208 | 
             
                    if mask is not None:
         | 
| 209 | 
             
                        raise NotImplementedError
         | 
| 210 | 
            -
                    out = ( | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 211 | 
             
                    return self.to_out(out)
         | 
| 212 |  | 
| 213 |  | 
| 214 | 
             
            class BasicTransformerBlock(nn.Module):
         | 
| 215 | 
             
                ATTENTION_MODES = {
         | 
| 216 | 
            -
                    "softmax": CrossAttention, | 
| 217 | 
            -
                    "softmax-xformers": MemoryEfficientCrossAttention
         | 
| 218 | 
            -
                }
         | 
| 219 | 
            -
             | 
| 220 | 
            -
                def __init__( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 221 | 
             
                    super().__init__()
         | 
| 222 | 
             
                    attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
         | 
| 223 | 
             
                    assert attn_mode in self.ATTENTION_MODES
         | 
| 224 | 
             
                    attn_cls = self.ATTENTION_MODES[attn_mode]
         | 
| 225 | 
             
                    self.disable_self_attn = disable_self_attn
         | 
| 226 | 
            -
                    self.attn1 = attn_cls( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 227 | 
             
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 228 | 
            -
                    self.attn2 = attn_cls( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 229 | 
             
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 230 | 
             
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 231 | 
             
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 232 | 
             
                    self.checkpoint = checkpoint
         | 
| 233 |  | 
| 234 | 
             
                def forward(self, x, context=None):
         | 
| 235 | 
            -
                    return checkpoint( | 
|  | |
|  | |
| 236 |  | 
| 237 | 
             
                def _forward(self, x, context=None):
         | 
| 238 | 
            -
                    x =  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 239 | 
             
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 240 | 
             
                    x = self.ff(self.norm3(x)) + x
         | 
| 241 | 
             
                    return x
         | 
| @@ -251,7 +308,18 @@ class SpatialTransformer(nn.Module): | |
| 251 | 
             
                NEW: use_linear for more efficiency instead of the 1x1 convs
         | 
| 252 | 
             
                """
         | 
| 253 |  | 
| 254 | 
            -
                def __init__( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 255 | 
             
                    super().__init__()
         | 
| 256 | 
             
                    assert context_dim is not None
         | 
| 257 | 
             
                    if not isinstance(context_dim, list):
         | 
| @@ -260,13 +328,30 @@ class SpatialTransformer(nn.Module): | |
| 260 | 
             
                    inner_dim = n_heads * d_head
         | 
| 261 | 
             
                    self.norm = Normalize(in_channels)
         | 
| 262 | 
             
                    if not use_linear:
         | 
| 263 | 
            -
                        self.proj_in = nn.Conv2d( | 
|  | |
|  | |
| 264 | 
             
                    else:
         | 
| 265 | 
             
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 266 |  | 
| 267 | 
            -
                    self.transformer_blocks = nn.ModuleList( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 268 | 
             
                    if not use_linear:
         | 
| 269 | 
            -
                        self.proj_out = zero_module( | 
|  | |
|  | |
| 270 | 
             
                    else:
         | 
| 271 | 
             
                        self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 272 | 
             
                    self.use_linear = use_linear
         | 
| @@ -280,27 +365,33 @@ class SpatialTransformer(nn.Module): | |
| 280 | 
             
                    x = self.norm(x)
         | 
| 281 | 
             
                    if not self.use_linear:
         | 
| 282 | 
             
                        x = self.proj_in(x)
         | 
| 283 | 
            -
                    x = rearrange(x,  | 
| 284 | 
             
                    if self.use_linear:
         | 
| 285 | 
             
                        x = self.proj_in(x)
         | 
| 286 | 
             
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 287 | 
             
                        x = block(x, context=context[i])
         | 
| 288 | 
             
                    if self.use_linear:
         | 
| 289 | 
             
                        x = self.proj_out(x)
         | 
| 290 | 
            -
                    x = rearrange(x,  | 
| 291 | 
             
                    if not self.use_linear:
         | 
| 292 | 
             
                        x = self.proj_out(x)
         | 
| 293 | 
             
                    return x + x_in
         | 
| 294 |  | 
| 295 |  | 
| 296 | 
             
            class BasicTransformerBlock3D(BasicTransformerBlock):
         | 
| 297 | 
            -
             | 
| 298 | 
             
                def forward(self, x, context=None, num_frames=1):
         | 
| 299 | 
            -
                    return checkpoint( | 
|  | |
|  | |
| 300 |  | 
| 301 | 
             
                def _forward(self, x, context=None, num_frames=1):
         | 
| 302 | 
             
                    x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
         | 
| 303 | 
            -
                    x =  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 304 | 
             
                    x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
         | 
| 305 | 
             
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 306 | 
             
                    x = self.ff(self.norm3(x)) + x
         | 
| @@ -308,9 +399,20 @@ class BasicTransformerBlock3D(BasicTransformerBlock): | |
| 308 |  | 
| 309 |  | 
| 310 | 
             
            class SpatialTransformer3D(nn.Module):
         | 
| 311 | 
            -
                 | 
| 312 | 
            -
             | 
| 313 | 
            -
                def __init__( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 314 | 
             
                    super().__init__()
         | 
| 315 | 
             
                    assert context_dim is not None
         | 
| 316 | 
             
                    if not isinstance(context_dim, list):
         | 
| @@ -319,13 +421,30 @@ class SpatialTransformer3D(nn.Module): | |
| 319 | 
             
                    inner_dim = n_heads * d_head
         | 
| 320 | 
             
                    self.norm = Normalize(in_channels)
         | 
| 321 | 
             
                    if not use_linear:
         | 
| 322 | 
            -
                        self.proj_in = nn.Conv2d( | 
|  | |
|  | |
| 323 | 
             
                    else:
         | 
| 324 | 
             
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 325 |  | 
| 326 | 
            -
                    self.transformer_blocks = nn.ModuleList( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 327 | 
             
                    if not use_linear:
         | 
| 328 | 
            -
                        self.proj_out = zero_module( | 
|  | |
|  | |
| 329 | 
             
                    else:
         | 
| 330 | 
             
                        self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 331 | 
             
                    self.use_linear = use_linear
         | 
| @@ -339,14 +458,14 @@ class SpatialTransformer3D(nn.Module): | |
| 339 | 
             
                    x = self.norm(x)
         | 
| 340 | 
             
                    if not self.use_linear:
         | 
| 341 | 
             
                        x = self.proj_in(x)
         | 
| 342 | 
            -
                    x = rearrange(x,  | 
| 343 | 
             
                    if self.use_linear:
         | 
| 344 | 
             
                        x = self.proj_in(x)
         | 
| 345 | 
             
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 346 | 
             
                        x = block(x, context=context[i], num_frames=num_frames)
         | 
| 347 | 
             
                    if self.use_linear:
         | 
| 348 | 
             
                        x = self.proj_out(x)
         | 
| 349 | 
            -
                    x = rearrange(x,  | 
| 350 | 
             
                    if not self.use_linear:
         | 
| 351 | 
             
                        x = self.proj_out(x)
         | 
| 352 | 
             
                    return x + x_in
         | 
|  | |
| 12 | 
             
            from .util import checkpoint
         | 
| 13 |  | 
| 14 | 
             
            try:
         | 
| 15 | 
            +
                import xformers  # type: ignore
         | 
| 16 | 
            +
                import xformers.ops  # type: ignore
         | 
| 17 | 
            +
             | 
| 18 | 
             
                XFORMERS_IS_AVAILBLE = True
         | 
| 19 | 
             
            except:
         | 
| 20 | 
             
                XFORMERS_IS_AVAILBLE = False
         | 
|  | |
| 48 |  | 
| 49 | 
             
            # feedforward
         | 
| 50 | 
             
            class GEGLU(nn.Module):
         | 
|  | |
| 51 | 
             
                def __init__(self, dim_in, dim_out):
         | 
| 52 | 
             
                    super().__init__()
         | 
| 53 | 
             
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
|  | |
| 58 |  | 
| 59 |  | 
| 60 | 
             
            class FeedForward(nn.Module):
         | 
| 61 | 
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
         | 
|  | |
| 62 | 
             
                    super().__init__()
         | 
| 63 | 
             
                    inner_dim = int(dim * mult)
         | 
| 64 | 
             
                    dim_out = default(dim_out, dim)
         | 
| 65 | 
            +
                    project_in = (
         | 
| 66 | 
            +
                        nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
         | 
| 67 | 
            +
                        if not glu
         | 
| 68 | 
            +
                        else GEGLU(dim, inner_dim)
         | 
| 69 | 
            +
                    )
         | 
| 70 |  | 
| 71 | 
            +
                    self.net = nn.Sequential(
         | 
| 72 | 
            +
                        project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
         | 
| 73 | 
            +
                    )
         | 
| 74 |  | 
| 75 | 
             
                def forward(self, x):
         | 
| 76 | 
             
                    return self.net(x)
         | 
|  | |
| 86 |  | 
| 87 |  | 
| 88 | 
             
            def Normalize(in_channels):
         | 
| 89 | 
            +
                return torch.nn.GroupNorm(
         | 
| 90 | 
            +
                    num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
         | 
| 91 | 
            +
                )
         | 
| 92 |  | 
| 93 |  | 
| 94 | 
             
            class SpatialSelfAttention(nn.Module):
         | 
|  | |
| 95 | 
             
                def __init__(self, in_channels):
         | 
| 96 | 
             
                    super().__init__()
         | 
| 97 | 
             
                    self.in_channels = in_channels
         | 
| 98 |  | 
| 99 | 
             
                    self.norm = Normalize(in_channels)
         | 
| 100 | 
            +
                    self.q = torch.nn.Conv2d(
         | 
| 101 | 
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         | 
| 102 | 
            +
                    )
         | 
| 103 | 
            +
                    self.k = torch.nn.Conv2d(
         | 
| 104 | 
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         | 
| 105 | 
            +
                    )
         | 
| 106 | 
            +
                    self.v = torch.nn.Conv2d(
         | 
| 107 | 
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         | 
| 108 | 
            +
                    )
         | 
| 109 | 
            +
                    self.proj_out = torch.nn.Conv2d(
         | 
| 110 | 
            +
                        in_channels, in_channels, kernel_size=1, stride=1, padding=0
         | 
| 111 | 
            +
                    )
         | 
| 112 |  | 
| 113 | 
             
                def forward(self, x):
         | 
| 114 | 
             
                    h_ = x
         | 
|  | |
| 119 |  | 
| 120 | 
             
                    # compute attention
         | 
| 121 | 
             
                    b, c, h, w = q.shape
         | 
| 122 | 
            +
                    q = rearrange(q, "b c h w -> b (h w) c")
         | 
| 123 | 
            +
                    k = rearrange(k, "b c h w -> b c (h w)")
         | 
| 124 | 
            +
                    w_ = torch.einsum("bij,bjk->bik", q, k)
         | 
| 125 |  | 
| 126 | 
            +
                    w_ = w_ * (int(c) ** (-0.5))
         | 
| 127 | 
             
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         | 
| 128 |  | 
| 129 | 
             
                    # attend to values
         | 
| 130 | 
            +
                    v = rearrange(v, "b c h w -> b c (h w)")
         | 
| 131 | 
            +
                    w_ = rearrange(w_, "b i j -> b j i")
         | 
| 132 | 
            +
                    h_ = torch.einsum("bij,bjk->bik", v, w_)
         | 
| 133 | 
            +
                    h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
         | 
| 134 | 
             
                    h_ = self.proj_out(h_)
         | 
| 135 |  | 
| 136 | 
             
                    return x + h_
         | 
| 137 |  | 
| 138 |  | 
| 139 | 
             
            class CrossAttention(nn.Module):
         | 
| 140 | 
            +
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
         | 
|  | |
| 141 | 
             
                    super().__init__()
         | 
| 142 | 
             
                    inner_dim = dim_head * heads
         | 
| 143 | 
             
                    context_dim = default(context_dim, query_dim)
         | 
|  | |
| 149 | 
             
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 150 | 
             
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 151 |  | 
| 152 | 
            +
                    self.to_out = nn.Sequential(
         | 
| 153 | 
            +
                        nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
         | 
| 154 | 
            +
                    )
         | 
| 155 |  | 
| 156 | 
             
                def forward(self, x, context=None, mask=None):
         | 
| 157 | 
             
                    h = self.heads
         | 
|  | |
| 161 | 
             
                    k = self.to_k(context)
         | 
| 162 | 
             
                    v = self.to_v(context)
         | 
| 163 |  | 
| 164 | 
            +
                    q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
         | 
| 165 |  | 
| 166 | 
             
                    # force cast to fp32 to avoid overflowing
         | 
| 167 | 
             
                    if _ATTN_PRECISION == "fp32":
         | 
| 168 | 
            +
                        with autocast(enabled=False, device_type="cuda"):
         | 
| 169 | 
             
                            q, k = q.float(), k.float()
         | 
| 170 | 
            +
                            sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
         | 
| 171 | 
             
                    else:
         | 
| 172 | 
            +
                        sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
         | 
| 173 |  | 
| 174 | 
             
                    del q, k
         | 
| 175 |  | 
| 176 | 
             
                    if mask is not None:
         | 
| 177 | 
            +
                        mask = rearrange(mask, "b ... -> b (...)")
         | 
| 178 | 
             
                        max_neg_value = -torch.finfo(sim.dtype).max
         | 
| 179 | 
            +
                        mask = repeat(mask, "b j -> (b h) () j", h=h)
         | 
| 180 | 
             
                        sim.masked_fill_(~mask, max_neg_value)
         | 
| 181 |  | 
| 182 | 
             
                    # attention, what we cannot get enough of
         | 
| 183 | 
             
                    sim = sim.softmax(dim=-1)
         | 
| 184 |  | 
| 185 | 
            +
                    out = einsum("b i j, b j d -> b i d", sim, v)
         | 
| 186 | 
            +
                    out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
         | 
| 187 | 
             
                    return self.to_out(out)
         | 
| 188 |  | 
| 189 |  | 
|  | |
| 202 | 
             
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 203 | 
             
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 204 |  | 
| 205 | 
            +
                    self.to_out = nn.Sequential(
         | 
| 206 | 
            +
                        nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
         | 
| 207 | 
            +
                    )
         | 
| 208 | 
             
                    self.attention_op: Optional[Any] = None
         | 
| 209 |  | 
| 210 | 
             
                def forward(self, x, context=None, mask=None):
         | 
|  | |
| 215 |  | 
| 216 | 
             
                    b, _, _ = q.shape
         | 
| 217 | 
             
                    q, k, v = map(
         | 
| 218 | 
            +
                        lambda t: t.unsqueeze(3)
         | 
| 219 | 
            +
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 220 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 221 | 
            +
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 222 | 
            +
                        .contiguous(),
         | 
| 223 | 
             
                        (q, k, v),
         | 
| 224 | 
             
                    )
         | 
| 225 |  | 
| 226 | 
             
                    # actually compute the attention, what we cannot get enough of
         | 
| 227 | 
            +
                    out = xformers.ops.memory_efficient_attention(
         | 
| 228 | 
            +
                        q, k, v, attn_bias=None, op=self.attention_op
         | 
| 229 | 
            +
                    )
         | 
| 230 |  | 
| 231 | 
             
                    if mask is not None:
         | 
| 232 | 
             
                        raise NotImplementedError
         | 
| 233 | 
            +
                    out = (
         | 
| 234 | 
            +
                        out.unsqueeze(0)
         | 
| 235 | 
            +
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         | 
| 236 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 237 | 
            +
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         | 
| 238 | 
            +
                    )
         | 
| 239 | 
             
                    return self.to_out(out)
         | 
| 240 |  | 
| 241 |  | 
| 242 | 
             
            class BasicTransformerBlock(nn.Module):
         | 
| 243 | 
             
                ATTENTION_MODES = {
         | 
| 244 | 
            +
                    "softmax": CrossAttention,
         | 
| 245 | 
            +
                    "softmax-xformers": MemoryEfficientCrossAttention,
         | 
| 246 | 
            +
                }  # vanilla attention
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                def __init__(
         | 
| 249 | 
            +
                    self,
         | 
| 250 | 
            +
                    dim,
         | 
| 251 | 
            +
                    n_heads,
         | 
| 252 | 
            +
                    d_head,
         | 
| 253 | 
            +
                    dropout=0.0,
         | 
| 254 | 
            +
                    context_dim=None,
         | 
| 255 | 
            +
                    gated_ff=True,
         | 
| 256 | 
            +
                    checkpoint=True,
         | 
| 257 | 
            +
                    disable_self_attn=False,
         | 
| 258 | 
            +
                ):
         | 
| 259 | 
             
                    super().__init__()
         | 
| 260 | 
             
                    attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
         | 
| 261 | 
             
                    assert attn_mode in self.ATTENTION_MODES
         | 
| 262 | 
             
                    attn_cls = self.ATTENTION_MODES[attn_mode]
         | 
| 263 | 
             
                    self.disable_self_attn = disable_self_attn
         | 
| 264 | 
            +
                    self.attn1 = attn_cls(
         | 
| 265 | 
            +
                        query_dim=dim,
         | 
| 266 | 
            +
                        heads=n_heads,
         | 
| 267 | 
            +
                        dim_head=d_head,
         | 
| 268 | 
            +
                        dropout=dropout,
         | 
| 269 | 
            +
                        context_dim=context_dim if self.disable_self_attn else None,
         | 
| 270 | 
            +
                    )  # is a self-attention if not self.disable_self_attn
         | 
| 271 | 
             
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 272 | 
            +
                    self.attn2 = attn_cls(
         | 
| 273 | 
            +
                        query_dim=dim,
         | 
| 274 | 
            +
                        context_dim=context_dim,
         | 
| 275 | 
            +
                        heads=n_heads,
         | 
| 276 | 
            +
                        dim_head=d_head,
         | 
| 277 | 
            +
                        dropout=dropout,
         | 
| 278 | 
            +
                    )  # is self-attn if context is none
         | 
| 279 | 
             
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 280 | 
             
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 281 | 
             
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 282 | 
             
                    self.checkpoint = checkpoint
         | 
| 283 |  | 
| 284 | 
             
                def forward(self, x, context=None):
         | 
| 285 | 
            +
                    return checkpoint(
         | 
| 286 | 
            +
                        self._forward, (x, context), self.parameters(), self.checkpoint
         | 
| 287 | 
            +
                    )
         | 
| 288 |  | 
| 289 | 
             
                def _forward(self, x, context=None):
         | 
| 290 | 
            +
                    x = (
         | 
| 291 | 
            +
                        self.attn1(
         | 
| 292 | 
            +
                            self.norm1(x), context=context if self.disable_self_attn else None
         | 
| 293 | 
            +
                        )
         | 
| 294 | 
            +
                        + x
         | 
| 295 | 
            +
                    )
         | 
| 296 | 
             
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 297 | 
             
                    x = self.ff(self.norm3(x)) + x
         | 
| 298 | 
             
                    return x
         | 
|  | |
| 308 | 
             
                NEW: use_linear for more efficiency instead of the 1x1 convs
         | 
| 309 | 
             
                """
         | 
| 310 |  | 
| 311 | 
            +
                def __init__(
         | 
| 312 | 
            +
                    self,
         | 
| 313 | 
            +
                    in_channels,
         | 
| 314 | 
            +
                    n_heads,
         | 
| 315 | 
            +
                    d_head,
         | 
| 316 | 
            +
                    depth=1,
         | 
| 317 | 
            +
                    dropout=0.0,
         | 
| 318 | 
            +
                    context_dim=None,
         | 
| 319 | 
            +
                    disable_self_attn=False,
         | 
| 320 | 
            +
                    use_linear=False,
         | 
| 321 | 
            +
                    use_checkpoint=True,
         | 
| 322 | 
            +
                ):
         | 
| 323 | 
             
                    super().__init__()
         | 
| 324 | 
             
                    assert context_dim is not None
         | 
| 325 | 
             
                    if not isinstance(context_dim, list):
         | 
|  | |
| 328 | 
             
                    inner_dim = n_heads * d_head
         | 
| 329 | 
             
                    self.norm = Normalize(in_channels)
         | 
| 330 | 
             
                    if not use_linear:
         | 
| 331 | 
            +
                        self.proj_in = nn.Conv2d(
         | 
| 332 | 
            +
                            in_channels, inner_dim, kernel_size=1, stride=1, padding=0
         | 
| 333 | 
            +
                        )
         | 
| 334 | 
             
                    else:
         | 
| 335 | 
             
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 336 |  | 
| 337 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 338 | 
            +
                        [
         | 
| 339 | 
            +
                            BasicTransformerBlock(
         | 
| 340 | 
            +
                                inner_dim,
         | 
| 341 | 
            +
                                n_heads,
         | 
| 342 | 
            +
                                d_head,
         | 
| 343 | 
            +
                                dropout=dropout,
         | 
| 344 | 
            +
                                context_dim=context_dim[d],
         | 
| 345 | 
            +
                                disable_self_attn=disable_self_attn,
         | 
| 346 | 
            +
                                checkpoint=use_checkpoint,
         | 
| 347 | 
            +
                            )
         | 
| 348 | 
            +
                            for d in range(depth)
         | 
| 349 | 
            +
                        ]
         | 
| 350 | 
            +
                    )
         | 
| 351 | 
             
                    if not use_linear:
         | 
| 352 | 
            +
                        self.proj_out = zero_module(
         | 
| 353 | 
            +
                            nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 354 | 
            +
                        )
         | 
| 355 | 
             
                    else:
         | 
| 356 | 
             
                        self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 357 | 
             
                    self.use_linear = use_linear
         | 
|  | |
| 365 | 
             
                    x = self.norm(x)
         | 
| 366 | 
             
                    if not self.use_linear:
         | 
| 367 | 
             
                        x = self.proj_in(x)
         | 
| 368 | 
            +
                    x = rearrange(x, "b c h w -> b (h w) c").contiguous()
         | 
| 369 | 
             
                    if self.use_linear:
         | 
| 370 | 
             
                        x = self.proj_in(x)
         | 
| 371 | 
             
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 372 | 
             
                        x = block(x, context=context[i])
         | 
| 373 | 
             
                    if self.use_linear:
         | 
| 374 | 
             
                        x = self.proj_out(x)
         | 
| 375 | 
            +
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
         | 
| 376 | 
             
                    if not self.use_linear:
         | 
| 377 | 
             
                        x = self.proj_out(x)
         | 
| 378 | 
             
                    return x + x_in
         | 
| 379 |  | 
| 380 |  | 
| 381 | 
             
            class BasicTransformerBlock3D(BasicTransformerBlock):
         | 
|  | |
| 382 | 
             
                def forward(self, x, context=None, num_frames=1):
         | 
| 383 | 
            +
                    return checkpoint(
         | 
| 384 | 
            +
                        self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
         | 
| 385 | 
            +
                    )
         | 
| 386 |  | 
| 387 | 
             
                def _forward(self, x, context=None, num_frames=1):
         | 
| 388 | 
             
                    x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
         | 
| 389 | 
            +
                    x = (
         | 
| 390 | 
            +
                        self.attn1(
         | 
| 391 | 
            +
                            self.norm1(x), context=context if self.disable_self_attn else None
         | 
| 392 | 
            +
                        )
         | 
| 393 | 
            +
                        + x
         | 
| 394 | 
            +
                    )
         | 
| 395 | 
             
                    x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
         | 
| 396 | 
             
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 397 | 
             
                    x = self.ff(self.norm3(x)) + x
         | 
|  | |
| 399 |  | 
| 400 |  | 
| 401 | 
             
            class SpatialTransformer3D(nn.Module):
         | 
| 402 | 
            +
                """3D self-attention"""
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                def __init__(
         | 
| 405 | 
            +
                    self,
         | 
| 406 | 
            +
                    in_channels,
         | 
| 407 | 
            +
                    n_heads,
         | 
| 408 | 
            +
                    d_head,
         | 
| 409 | 
            +
                    depth=1,
         | 
| 410 | 
            +
                    dropout=0.0,
         | 
| 411 | 
            +
                    context_dim=None,
         | 
| 412 | 
            +
                    disable_self_attn=False,
         | 
| 413 | 
            +
                    use_linear=False,
         | 
| 414 | 
            +
                    use_checkpoint=True,
         | 
| 415 | 
            +
                ):
         | 
| 416 | 
             
                    super().__init__()
         | 
| 417 | 
             
                    assert context_dim is not None
         | 
| 418 | 
             
                    if not isinstance(context_dim, list):
         | 
|  | |
| 421 | 
             
                    inner_dim = n_heads * d_head
         | 
| 422 | 
             
                    self.norm = Normalize(in_channels)
         | 
| 423 | 
             
                    if not use_linear:
         | 
| 424 | 
            +
                        self.proj_in = nn.Conv2d(
         | 
| 425 | 
            +
                            in_channels, inner_dim, kernel_size=1, stride=1, padding=0
         | 
| 426 | 
            +
                        )
         | 
| 427 | 
             
                    else:
         | 
| 428 | 
             
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 429 |  | 
| 430 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 431 | 
            +
                        [
         | 
| 432 | 
            +
                            BasicTransformerBlock3D(
         | 
| 433 | 
            +
                                inner_dim,
         | 
| 434 | 
            +
                                n_heads,
         | 
| 435 | 
            +
                                d_head,
         | 
| 436 | 
            +
                                dropout=dropout,
         | 
| 437 | 
            +
                                context_dim=context_dim[d],
         | 
| 438 | 
            +
                                disable_self_attn=disable_self_attn,
         | 
| 439 | 
            +
                                checkpoint=use_checkpoint,
         | 
| 440 | 
            +
                            )
         | 
| 441 | 
            +
                            for d in range(depth)
         | 
| 442 | 
            +
                        ]
         | 
| 443 | 
            +
                    )
         | 
| 444 | 
             
                    if not use_linear:
         | 
| 445 | 
            +
                        self.proj_out = zero_module(
         | 
| 446 | 
            +
                            nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 447 | 
            +
                        )
         | 
| 448 | 
             
                    else:
         | 
| 449 | 
             
                        self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 450 | 
             
                    self.use_linear = use_linear
         | 
|  | |
| 458 | 
             
                    x = self.norm(x)
         | 
| 459 | 
             
                    if not self.use_linear:
         | 
| 460 | 
             
                        x = self.proj_in(x)
         | 
| 461 | 
            +
                    x = rearrange(x, "b c h w -> b (h w) c").contiguous()
         | 
| 462 | 
             
                    if self.use_linear:
         | 
| 463 | 
             
                        x = self.proj_in(x)
         | 
| 464 | 
             
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 465 | 
             
                        x = block(x, context=context[i], num_frames=num_frames)
         | 
| 466 | 
             
                    if self.use_linear:
         | 
| 467 | 
             
                        x = self.proj_out(x)
         | 
| 468 | 
            +
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
         | 
| 469 | 
             
                    if not self.use_linear:
         | 
| 470 | 
             
                        x = self.proj_out(x)
         | 
| 471 | 
             
                    return x + x_in
         | 
    	
        mvdream/models.py
    CHANGED
    
    | @@ -5,6 +5,10 @@ import numpy as np | |
| 5 | 
             
            import torch as th
         | 
| 6 | 
             
            import torch.nn as nn
         | 
| 7 | 
             
            import torch.nn.functional as F
         | 
|  | |
|  | |
|  | |
|  | |
| 8 |  | 
| 9 | 
             
            from abc import abstractmethod
         | 
| 10 | 
             
            from .util import (
         | 
| @@ -15,80 +19,6 @@ from .util import ( | |
| 15 | 
             
                timestep_embedding,
         | 
| 16 | 
             
            )
         | 
| 17 | 
             
            from .attention import SpatialTransformer, SpatialTransformer3D
         | 
| 18 | 
            -
            from diffusers.configuration_utils import ConfigMixin
         | 
| 19 | 
            -
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 20 | 
            -
            from typing import Any, List, Optional
         | 
| 21 | 
            -
            from torch import Tensor
         | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
            class MultiViewUNetWrapperModel(ModelMixin, ConfigMixin):
         | 
| 25 | 
            -
             | 
| 26 | 
            -
                def __init__(self, 
         | 
| 27 | 
            -
                        image_size,
         | 
| 28 | 
            -
                        in_channels,
         | 
| 29 | 
            -
                        model_channels,
         | 
| 30 | 
            -
                        out_channels,
         | 
| 31 | 
            -
                        num_res_blocks,
         | 
| 32 | 
            -
                        attention_resolutions,
         | 
| 33 | 
            -
                        dropout=0,
         | 
| 34 | 
            -
                        channel_mult=(1, 2, 4, 8),
         | 
| 35 | 
            -
                        conv_resample=True,
         | 
| 36 | 
            -
                        dims=2,
         | 
| 37 | 
            -
                        num_classes=None,
         | 
| 38 | 
            -
                        use_checkpoint=False,
         | 
| 39 | 
            -
                        num_heads=-1,
         | 
| 40 | 
            -
                        num_head_channels=-1,
         | 
| 41 | 
            -
                        num_heads_upsample=-1,
         | 
| 42 | 
            -
                        use_scale_shift_norm=False,
         | 
| 43 | 
            -
                        resblock_updown=False,
         | 
| 44 | 
            -
                        use_new_attention_order=False,
         | 
| 45 | 
            -
                        use_spatial_transformer=False, # custom transformer support
         | 
| 46 | 
            -
                        transformer_depth=1, # custom transformer support
         | 
| 47 | 
            -
                        context_dim=None, # custom transformer support
         | 
| 48 | 
            -
                        n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
         | 
| 49 | 
            -
                        legacy=True,
         | 
| 50 | 
            -
                        disable_self_attentions=None,
         | 
| 51 | 
            -
                        num_attention_blocks=None,
         | 
| 52 | 
            -
                        disable_middle_self_attn=False,
         | 
| 53 | 
            -
                        use_linear_in_transformer=False,
         | 
| 54 | 
            -
                        adm_in_channels=None,
         | 
| 55 | 
            -
                        camera_dim=None,):
         | 
| 56 | 
            -
                    super().__init__()
         | 
| 57 | 
            -
                    self.unet = MultiViewUNetModel(
         | 
| 58 | 
            -
                        image_size=image_size,
         | 
| 59 | 
            -
                        in_channels=in_channels,
         | 
| 60 | 
            -
                        model_channels=model_channels,
         | 
| 61 | 
            -
                        out_channels=out_channels,
         | 
| 62 | 
            -
                        num_res_blocks=num_res_blocks,
         | 
| 63 | 
            -
                        attention_resolutions=attention_resolutions,
         | 
| 64 | 
            -
                        dropout=dropout,
         | 
| 65 | 
            -
                        channel_mult=channel_mult,
         | 
| 66 | 
            -
                        conv_resample=conv_resample,
         | 
| 67 | 
            -
                        dims=dims,
         | 
| 68 | 
            -
                        num_classes=num_classes,
         | 
| 69 | 
            -
                        use_checkpoint=use_checkpoint,
         | 
| 70 | 
            -
                        num_heads=num_heads,
         | 
| 71 | 
            -
                        num_head_channels=num_head_channels,
         | 
| 72 | 
            -
                        num_heads_upsample=num_heads_upsample,
         | 
| 73 | 
            -
                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 74 | 
            -
                        resblock_updown=resblock_updown,
         | 
| 75 | 
            -
                        use_new_attention_order=use_new_attention_order,
         | 
| 76 | 
            -
                        use_spatial_transformer=use_spatial_transformer,
         | 
| 77 | 
            -
                        transformer_depth=transformer_depth,
         | 
| 78 | 
            -
                        context_dim=context_dim,
         | 
| 79 | 
            -
                        n_embed=n_embed,
         | 
| 80 | 
            -
                        legacy=legacy,
         | 
| 81 | 
            -
                        disable_self_attentions=disable_self_attentions,
         | 
| 82 | 
            -
                        num_attention_blocks=num_attention_blocks,
         | 
| 83 | 
            -
                        disable_middle_self_attn=disable_middle_self_attn,
         | 
| 84 | 
            -
                        use_linear_in_transformer=use_linear_in_transformer,
         | 
| 85 | 
            -
                        adm_in_channels=adm_in_channels,
         | 
| 86 | 
            -
                        camera_dim=camera_dim,
         | 
| 87 | 
            -
                    )
         | 
| 88 | 
            -
             | 
| 89 | 
            -
                def forward(self, *args, **kwargs):
         | 
| 90 | 
            -
                    return self.unet(*args, **kwargs)
         | 
| 91 | 
            -
             | 
| 92 |  | 
| 93 | 
             
            class TimestepBlock(nn.Module):
         | 
| 94 | 
             
                """
         | 
| @@ -137,12 +67,16 @@ class Upsample(nn.Module): | |
| 137 | 
             
                    self.use_conv = use_conv
         | 
| 138 | 
             
                    self.dims = dims
         | 
| 139 | 
             
                    if use_conv:
         | 
| 140 | 
            -
                        self.conv = conv_nd( | 
|  | |
|  | |
| 141 |  | 
| 142 | 
             
                def forward(self, x):
         | 
| 143 | 
             
                    assert x.shape[1] == self.channels
         | 
| 144 | 
             
                    if self.dims == 3:
         | 
| 145 | 
            -
                        x = F.interpolate( | 
|  | |
|  | |
| 146 | 
             
                    else:
         | 
| 147 | 
             
                        x = F.interpolate(x, scale_factor=2, mode="nearest")
         | 
| 148 | 
             
                    if self.use_conv:
         | 
| @@ -167,7 +101,14 @@ class Downsample(nn.Module): | |
| 167 | 
             
                    self.dims = dims
         | 
| 168 | 
             
                    stride = 2 if dims != 3 else (1, 2, 2)
         | 
| 169 | 
             
                    if use_conv:
         | 
| 170 | 
            -
                        self.op = conv_nd( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 171 | 
             
                    else:
         | 
| 172 | 
             
                        assert self.channels == self.out_channels
         | 
| 173 | 
             
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         | 
| @@ -243,13 +184,17 @@ class ResBlock(TimestepBlock): | |
| 243 | 
             
                        nn.GroupNorm(32, self.out_channels),
         | 
| 244 | 
             
                        nn.SiLU(),
         | 
| 245 | 
             
                        nn.Dropout(p=dropout),
         | 
| 246 | 
            -
                        zero_module( | 
|  | |
|  | |
| 247 | 
             
                    )
         | 
| 248 |  | 
| 249 | 
             
                    if self.out_channels == channels:
         | 
| 250 | 
             
                        self.skip_connection = nn.Identity()
         | 
| 251 | 
             
                    elif use_conv:
         | 
| 252 | 
            -
                        self.skip_connection = conv_nd( | 
|  | |
|  | |
| 253 | 
             
                    else:
         | 
| 254 | 
             
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         | 
| 255 |  | 
| @@ -260,7 +205,9 @@ class ResBlock(TimestepBlock): | |
| 260 | 
             
                    :param emb: an [N x emb_channels] Tensor of timestep embeddings.
         | 
| 261 | 
             
                    :return: an [N x C x ...] Tensor of outputs.
         | 
| 262 | 
             
                    """
         | 
| 263 | 
            -
                    return checkpoint( | 
|  | |
|  | |
| 264 |  | 
| 265 | 
             
                def _forward(self, x, emb):
         | 
| 266 | 
             
                    if self.updown:
         | 
| @@ -305,7 +252,9 @@ class AttentionBlock(nn.Module): | |
| 305 | 
             
                    if num_head_channels == -1:
         | 
| 306 | 
             
                        self.num_heads = num_heads
         | 
| 307 | 
             
                    else:
         | 
| 308 | 
            -
                        assert ( | 
|  | |
|  | |
| 309 | 
             
                        self.num_heads = channels // num_head_channels
         | 
| 310 | 
             
                    self.use_checkpoint = use_checkpoint
         | 
| 311 | 
             
                    self.norm = nn.GroupNorm(32, channels)
         | 
| @@ -320,8 +269,7 @@ class AttentionBlock(nn.Module): | |
| 320 | 
             
                    self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
         | 
| 321 |  | 
| 322 | 
             
                def forward(self, x):
         | 
| 323 | 
            -
                    return checkpoint(self._forward, (x,), self.parameters(), True) | 
| 324 | 
            -
                    #return pt_checkpoint(self._forward, x)  # pytorch
         | 
| 325 |  | 
| 326 | 
             
                def _forward(self, x):
         | 
| 327 | 
             
                    b, c, *spatial = x.shape
         | 
| @@ -332,26 +280,6 @@ class AttentionBlock(nn.Module): | |
| 332 | 
             
                    return (x + h).reshape(b, c, *spatial)
         | 
| 333 |  | 
| 334 |  | 
| 335 | 
            -
            def count_flops_attn(model, _x, y):
         | 
| 336 | 
            -
                """
         | 
| 337 | 
            -
                A counter for the `thop` package to count the operations in an
         | 
| 338 | 
            -
                attention operation.
         | 
| 339 | 
            -
                Meant to be used like:
         | 
| 340 | 
            -
                    macs, params = thop.profile(
         | 
| 341 | 
            -
                        model,
         | 
| 342 | 
            -
                        inputs=(inputs, timestamps),
         | 
| 343 | 
            -
                        custom_ops={QKVAttention: QKVAttention.count_flops},
         | 
| 344 | 
            -
                    )
         | 
| 345 | 
            -
                """
         | 
| 346 | 
            -
                b, c, *spatial = y[0].shape
         | 
| 347 | 
            -
                num_spatial = int(np.prod(spatial))
         | 
| 348 | 
            -
                # We perform two matmuls with the same number of ops.
         | 
| 349 | 
            -
                # The first computes the weight matrix, the second computes
         | 
| 350 | 
            -
                # the combination of the value vectors.
         | 
| 351 | 
            -
                matmul_ops = 2 * b * (num_spatial**2) * c
         | 
| 352 | 
            -
                model.total_ops += th.DoubleTensor([matmul_ops])
         | 
| 353 | 
            -
             | 
| 354 | 
            -
             | 
| 355 | 
             
            class QKVAttentionLegacy(nn.Module):
         | 
| 356 | 
             
                """
         | 
| 357 | 
             
                A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
         | 
| @@ -372,15 +300,13 @@ class QKVAttentionLegacy(nn.Module): | |
| 372 | 
             
                    ch = width // (3 * self.n_heads)
         | 
| 373 | 
             
                    q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
         | 
| 374 | 
             
                    scale = 1 / math.sqrt(math.sqrt(ch))
         | 
| 375 | 
            -
                    weight = th.einsum( | 
|  | |
|  | |
| 376 | 
             
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 377 | 
             
                    a = th.einsum("bts,bcs->bct", weight, v)
         | 
| 378 | 
             
                    return a.reshape(bs, -1, length)
         | 
| 379 |  | 
| 380 | 
            -
                @staticmethod
         | 
| 381 | 
            -
                def count_flops(model, _x, y):
         | 
| 382 | 
            -
                    return count_flops_attn(model, _x, y)
         | 
| 383 | 
            -
             | 
| 384 |  | 
| 385 | 
             
            class QKVAttention(nn.Module):
         | 
| 386 | 
             
                """
         | 
| @@ -406,17 +332,13 @@ class QKVAttention(nn.Module): | |
| 406 | 
             
                        "bct,bcs->bts",
         | 
| 407 | 
             
                        (q * scale).view(bs * self.n_heads, ch, length),
         | 
| 408 | 
             
                        (k * scale).view(bs * self.n_heads, ch, length),
         | 
| 409 | 
            -
                    ) | 
| 410 | 
             
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 411 | 
             
                    a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
         | 
| 412 | 
             
                    return a.reshape(bs, -1, length)
         | 
| 413 |  | 
| 414 | 
            -
                @staticmethod
         | 
| 415 | 
            -
                def count_flops(model, _x, y):
         | 
| 416 | 
            -
                    return count_flops_attn(model, _x, y)
         | 
| 417 |  | 
| 418 | 
            -
             | 
| 419 | 
            -
            class MultiViewUNetModel(nn.Module):
         | 
| 420 | 
             
                """
         | 
| 421 | 
             
                The full multi-view UNet model with attention, timestep embedding and camera embedding.
         | 
| 422 | 
             
                :param in_channels: channels in the input Tensor.
         | 
| @@ -448,44 +370,49 @@ class MultiViewUNetModel(nn.Module): | |
| 448 | 
             
                """
         | 
| 449 |  | 
| 450 | 
             
                def __init__(
         | 
| 451 | 
            -
             | 
| 452 | 
            -
             | 
| 453 | 
            -
             | 
| 454 | 
            -
             | 
| 455 | 
            -
             | 
| 456 | 
            -
             | 
| 457 | 
            -
             | 
| 458 | 
            -
             | 
| 459 | 
            -
             | 
| 460 | 
            -
             | 
| 461 | 
            -
             | 
| 462 | 
            -
             | 
| 463 | 
            -
             | 
| 464 | 
            -
             | 
| 465 | 
            -
             | 
| 466 | 
            -
             | 
| 467 | 
            -
             | 
| 468 | 
            -
             | 
| 469 | 
            -
             | 
| 470 | 
            -
             | 
| 471 | 
            -
             | 
| 472 | 
            -
             | 
| 473 | 
            -
             | 
| 474 | 
            -
             | 
| 475 | 
            -
             | 
| 476 | 
            -
             | 
| 477 | 
            -
             | 
| 478 | 
            -
             | 
| 479 | 
            -
             | 
| 480 | 
            -
             | 
| 481 | 
             
                ):
         | 
| 482 | 
             
                    super().__init__()
         | 
| 483 | 
             
                    if use_spatial_transformer:
         | 
| 484 | 
            -
                        assert  | 
|  | |
|  | |
| 485 |  | 
| 486 | 
             
                    if context_dim is not None:
         | 
| 487 | 
            -
                        assert  | 
|  | |
|  | |
| 488 | 
             
                        from omegaconf.listconfig import ListConfig
         | 
|  | |
| 489 | 
             
                        if type(context_dim) == ListConfig:
         | 
| 490 | 
             
                            context_dim = list(context_dim)
         | 
| 491 |  | 
| @@ -493,10 +420,14 @@ class MultiViewUNetModel(nn.Module): | |
| 493 | 
             
                        num_heads_upsample = num_heads
         | 
| 494 |  | 
| 495 | 
             
                    if num_heads == -1:
         | 
| 496 | 
            -
                        assert  | 
|  | |
|  | |
| 497 |  | 
| 498 | 
             
                    if num_head_channels == -1:
         | 
| 499 | 
            -
                        assert  | 
|  | |
|  | |
| 500 |  | 
| 501 | 
             
                    self.image_size = image_size
         | 
| 502 | 
             
                    self.in_channels = in_channels
         | 
| @@ -506,19 +437,28 @@ class MultiViewUNetModel(nn.Module): | |
| 506 | 
             
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         | 
| 507 | 
             
                    else:
         | 
| 508 | 
             
                        if len(num_res_blocks) != len(channel_mult):
         | 
| 509 | 
            -
                            raise ValueError( | 
| 510 | 
            -
             | 
|  | |
|  | |
| 511 | 
             
                        self.num_res_blocks = num_res_blocks
         | 
| 512 | 
             
                    if disable_self_attentions is not None:
         | 
| 513 | 
             
                        # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
         | 
| 514 | 
             
                        assert len(disable_self_attentions) == len(channel_mult)
         | 
| 515 | 
             
                    if num_attention_blocks is not None:
         | 
| 516 | 
             
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         | 
| 517 | 
            -
                        assert all( | 
| 518 | 
            -
             | 
| 519 | 
            -
             | 
| 520 | 
            -
             | 
| 521 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 522 |  | 
| 523 | 
             
                    self.attention_resolutions = attention_resolutions
         | 
| 524 | 
             
                    self.dropout = dropout
         | 
| @@ -554,30 +494,40 @@ class MultiViewUNetModel(nn.Module): | |
| 554 | 
             
                            self.label_emb = nn.Linear(1, time_embed_dim)
         | 
| 555 | 
             
                        elif self.num_classes == "sequential":
         | 
| 556 | 
             
                            assert adm_in_channels is not None
         | 
| 557 | 
            -
                            self.label_emb = nn.Sequential( | 
| 558 | 
            -
                                nn. | 
| 559 | 
            -
             | 
| 560 | 
            -
             | 
| 561 | 
            -
             | 
|  | |
|  | |
| 562 | 
             
                        else:
         | 
| 563 | 
             
                            raise ValueError()
         | 
| 564 |  | 
| 565 | 
            -
                    self.input_blocks = nn.ModuleList( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 566 | 
             
                    self._feature_size = model_channels
         | 
| 567 | 
             
                    input_block_chans = [model_channels]
         | 
| 568 | 
             
                    ch = model_channels
         | 
| 569 | 
             
                    ds = 1
         | 
| 570 | 
             
                    for level, mult in enumerate(channel_mult):
         | 
| 571 | 
             
                        for nr in range(self.num_res_blocks[level]):
         | 
| 572 | 
            -
                            layers: List[Any] = [ | 
| 573 | 
            -
                                 | 
| 574 | 
            -
             | 
| 575 | 
            -
             | 
| 576 | 
            -
             | 
| 577 | 
            -
             | 
| 578 | 
            -
             | 
| 579 | 
            -
             | 
| 580 | 
            -
             | 
|  | |
|  | |
| 581 | 
             
                            ch = mult * model_channels
         | 
| 582 | 
             
                            if ds in attention_resolutions:
         | 
| 583 | 
             
                                if num_head_channels == -1:
         | 
| @@ -586,36 +536,61 @@ class MultiViewUNetModel(nn.Module): | |
| 586 | 
             
                                    num_heads = ch // num_head_channels
         | 
| 587 | 
             
                                    dim_head = num_head_channels
         | 
| 588 | 
             
                                if legacy:
         | 
| 589 | 
            -
                                    #num_heads = 1
         | 
| 590 | 
            -
                                    dim_head =  | 
|  | |
|  | |
|  | |
|  | |
| 591 | 
             
                                if disable_self_attentions is not None:
         | 
| 592 | 
             
                                    disabled_sa = disable_self_attentions[level]
         | 
| 593 | 
             
                                else:
         | 
| 594 | 
             
                                    disabled_sa = False
         | 
| 595 |  | 
| 596 | 
             
                                if num_attention_blocks is None or nr < num_attention_blocks[level]:
         | 
| 597 | 
            -
                                    layers.append( | 
| 598 | 
            -
                                         | 
| 599 | 
            -
             | 
| 600 | 
            -
             | 
| 601 | 
            -
             | 
| 602 | 
            -
             | 
| 603 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 604 | 
             
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         | 
| 605 | 
             
                            self._feature_size += ch
         | 
| 606 | 
             
                            input_block_chans.append(ch)
         | 
| 607 | 
             
                        if level != len(channel_mult) - 1:
         | 
| 608 | 
             
                            out_ch = ch
         | 
| 609 | 
            -
                            self.input_blocks.append( | 
| 610 | 
            -
                                 | 
| 611 | 
            -
             | 
| 612 | 
            -
             | 
| 613 | 
            -
             | 
| 614 | 
            -
             | 
| 615 | 
            -
             | 
| 616 | 
            -
             | 
| 617 | 
            -
             | 
| 618 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 619 | 
             
                            ch = out_ch
         | 
| 620 | 
             
                            input_block_chans.append(ch)
         | 
| 621 | 
             
                            ds *= 2
         | 
| @@ -627,7 +602,7 @@ class MultiViewUNetModel(nn.Module): | |
| 627 | 
             
                        num_heads = ch // num_head_channels
         | 
| 628 | 
             
                        dim_head = num_head_channels
         | 
| 629 | 
             
                    if legacy:
         | 
| 630 | 
            -
                        #num_heads = 1
         | 
| 631 | 
             
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         | 
| 632 | 
             
                    self.middle_block = TimestepEmbedSequential(
         | 
| 633 | 
             
                        ResBlock(
         | 
| @@ -644,8 +619,18 @@ class MultiViewUNetModel(nn.Module): | |
| 644 | 
             
                            num_heads=num_heads,
         | 
| 645 | 
             
                            num_head_channels=dim_head,
         | 
| 646 | 
             
                            use_new_attention_order=use_new_attention_order,
         | 
| 647 | 
            -
                        ) | 
| 648 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 649 | 
             
                        ResBlock(
         | 
| 650 | 
             
                            ch,
         | 
| 651 | 
             
                            time_embed_dim,
         | 
| @@ -661,15 +646,17 @@ class MultiViewUNetModel(nn.Module): | |
| 661 | 
             
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         | 
| 662 | 
             
                        for i in range(self.num_res_blocks[level] + 1):
         | 
| 663 | 
             
                            ich = input_block_chans.pop()
         | 
| 664 | 
            -
                            layers = [ | 
| 665 | 
            -
                                 | 
| 666 | 
            -
             | 
| 667 | 
            -
             | 
| 668 | 
            -
             | 
| 669 | 
            -
             | 
| 670 | 
            -
             | 
| 671 | 
            -
             | 
| 672 | 
            -
             | 
|  | |
|  | |
| 673 | 
             
                            ch = model_channels * mult
         | 
| 674 | 
             
                            if ds in attention_resolutions:
         | 
| 675 | 
             
                                if num_head_channels == -1:
         | 
| @@ -678,33 +665,54 @@ class MultiViewUNetModel(nn.Module): | |
| 678 | 
             
                                    num_heads = ch // num_head_channels
         | 
| 679 | 
             
                                    dim_head = num_head_channels
         | 
| 680 | 
             
                                if legacy:
         | 
| 681 | 
            -
                                    #num_heads = 1
         | 
| 682 | 
            -
                                    dim_head =  | 
|  | |
|  | |
|  | |
|  | |
| 683 | 
             
                                if disable_self_attentions is not None:
         | 
| 684 | 
             
                                    disabled_sa = disable_self_attentions[level]
         | 
| 685 | 
             
                                else:
         | 
| 686 | 
             
                                    disabled_sa = False
         | 
| 687 |  | 
| 688 | 
             
                                if num_attention_blocks is None or i < num_attention_blocks[level]:
         | 
| 689 | 
            -
                                    layers.append( | 
| 690 | 
            -
                                         | 
| 691 | 
            -
             | 
| 692 | 
            -
             | 
| 693 | 
            -
             | 
| 694 | 
            -
             | 
| 695 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 696 | 
             
                            if level and i == self.num_res_blocks[level]:
         | 
| 697 | 
             
                                out_ch = ch
         | 
| 698 | 
            -
                                layers.append( | 
| 699 | 
            -
                                     | 
| 700 | 
            -
             | 
| 701 | 
            -
             | 
| 702 | 
            -
             | 
| 703 | 
            -
             | 
| 704 | 
            -
             | 
| 705 | 
            -
             | 
| 706 | 
            -
             | 
| 707 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 708 | 
             
                                ds //= 2
         | 
| 709 | 
             
                            self.output_blocks.append(TimestepEmbedSequential(*layers))
         | 
| 710 | 
             
                            self._feature_size += ch
         | 
| @@ -718,10 +726,19 @@ class MultiViewUNetModel(nn.Module): | |
| 718 | 
             
                        self.id_predictor = nn.Sequential(
         | 
| 719 | 
             
                            nn.GroupNorm(32, ch),
         | 
| 720 | 
             
                            conv_nd(dims, model_channels, n_embed, 1),
         | 
| 721 | 
            -
                            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         | 
| 722 | 
             
                        )
         | 
| 723 |  | 
| 724 | 
            -
                def forward( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 725 | 
             
                    """
         | 
| 726 | 
             
                    Apply the model to an input batch.
         | 
| 727 | 
             
                    :param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
         | 
| @@ -731,11 +748,17 @@ class MultiViewUNetModel(nn.Module): | |
| 731 | 
             
                    :param num_frames: a integer indicating number of frames for tensor reshaping.
         | 
| 732 | 
             
                    :return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
         | 
| 733 | 
             
                    """
         | 
| 734 | 
            -
                    assert  | 
| 735 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 736 | 
             
                    hs = []
         | 
| 737 | 
            -
                    t_emb = timestep_embedding( | 
| 738 | 
            -
             | 
|  | |
|  | |
| 739 | 
             
                    emb = self.time_embed(t_emb)
         | 
| 740 |  | 
| 741 | 
             
                    if self.num_classes is not None:
         | 
|  | |
| 5 | 
             
            import torch as th
         | 
| 6 | 
             
            import torch.nn as nn
         | 
| 7 | 
             
            import torch.nn.functional as F
         | 
| 8 | 
            +
            from diffusers.configuration_utils import ConfigMixin
         | 
| 9 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 10 | 
            +
            from typing import Any, List, Optional
         | 
| 11 | 
            +
            from torch import Tensor
         | 
| 12 |  | 
| 13 | 
             
            from abc import abstractmethod
         | 
| 14 | 
             
            from .util import (
         | 
|  | |
| 19 | 
             
                timestep_embedding,
         | 
| 20 | 
             
            )
         | 
| 21 | 
             
            from .attention import SpatialTransformer, SpatialTransformer3D
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 22 |  | 
| 23 | 
             
            class TimestepBlock(nn.Module):
         | 
| 24 | 
             
                """
         | 
|  | |
| 67 | 
             
                    self.use_conv = use_conv
         | 
| 68 | 
             
                    self.dims = dims
         | 
| 69 | 
             
                    if use_conv:
         | 
| 70 | 
            +
                        self.conv = conv_nd(
         | 
| 71 | 
            +
                            dims, self.channels, self.out_channels, 3, padding=padding
         | 
| 72 | 
            +
                        )
         | 
| 73 |  | 
| 74 | 
             
                def forward(self, x):
         | 
| 75 | 
             
                    assert x.shape[1] == self.channels
         | 
| 76 | 
             
                    if self.dims == 3:
         | 
| 77 | 
            +
                        x = F.interpolate(
         | 
| 78 | 
            +
                            x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
         | 
| 79 | 
            +
                        )
         | 
| 80 | 
             
                    else:
         | 
| 81 | 
             
                        x = F.interpolate(x, scale_factor=2, mode="nearest")
         | 
| 82 | 
             
                    if self.use_conv:
         | 
|  | |
| 101 | 
             
                    self.dims = dims
         | 
| 102 | 
             
                    stride = 2 if dims != 3 else (1, 2, 2)
         | 
| 103 | 
             
                    if use_conv:
         | 
| 104 | 
            +
                        self.op = conv_nd(
         | 
| 105 | 
            +
                            dims,
         | 
| 106 | 
            +
                            self.channels,
         | 
| 107 | 
            +
                            self.out_channels,
         | 
| 108 | 
            +
                            3,
         | 
| 109 | 
            +
                            stride=stride,
         | 
| 110 | 
            +
                            padding=padding,
         | 
| 111 | 
            +
                        )
         | 
| 112 | 
             
                    else:
         | 
| 113 | 
             
                        assert self.channels == self.out_channels
         | 
| 114 | 
             
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         | 
|  | |
| 184 | 
             
                        nn.GroupNorm(32, self.out_channels),
         | 
| 185 | 
             
                        nn.SiLU(),
         | 
| 186 | 
             
                        nn.Dropout(p=dropout),
         | 
| 187 | 
            +
                        zero_module(
         | 
| 188 | 
            +
                            conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
         | 
| 189 | 
            +
                        ),
         | 
| 190 | 
             
                    )
         | 
| 191 |  | 
| 192 | 
             
                    if self.out_channels == channels:
         | 
| 193 | 
             
                        self.skip_connection = nn.Identity()
         | 
| 194 | 
             
                    elif use_conv:
         | 
| 195 | 
            +
                        self.skip_connection = conv_nd(
         | 
| 196 | 
            +
                            dims, channels, self.out_channels, 3, padding=1
         | 
| 197 | 
            +
                        )
         | 
| 198 | 
             
                    else:
         | 
| 199 | 
             
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         | 
| 200 |  | 
|  | |
| 205 | 
             
                    :param emb: an [N x emb_channels] Tensor of timestep embeddings.
         | 
| 206 | 
             
                    :return: an [N x C x ...] Tensor of outputs.
         | 
| 207 | 
             
                    """
         | 
| 208 | 
            +
                    return checkpoint(
         | 
| 209 | 
            +
                        self._forward, (x, emb), self.parameters(), self.use_checkpoint
         | 
| 210 | 
            +
                    )
         | 
| 211 |  | 
| 212 | 
             
                def _forward(self, x, emb):
         | 
| 213 | 
             
                    if self.updown:
         | 
|  | |
| 252 | 
             
                    if num_head_channels == -1:
         | 
| 253 | 
             
                        self.num_heads = num_heads
         | 
| 254 | 
             
                    else:
         | 
| 255 | 
            +
                        assert (
         | 
| 256 | 
            +
                            channels % num_head_channels == 0
         | 
| 257 | 
            +
                        ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
         | 
| 258 | 
             
                        self.num_heads = channels // num_head_channels
         | 
| 259 | 
             
                    self.use_checkpoint = use_checkpoint
         | 
| 260 | 
             
                    self.norm = nn.GroupNorm(32, channels)
         | 
|  | |
| 269 | 
             
                    self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
         | 
| 270 |  | 
| 271 | 
             
                def forward(self, x):
         | 
| 272 | 
            +
                    return checkpoint(self._forward, (x,), self.parameters(), True)
         | 
|  | |
| 273 |  | 
| 274 | 
             
                def _forward(self, x):
         | 
| 275 | 
             
                    b, c, *spatial = x.shape
         | 
|  | |
| 280 | 
             
                    return (x + h).reshape(b, c, *spatial)
         | 
| 281 |  | 
| 282 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 283 | 
             
            class QKVAttentionLegacy(nn.Module):
         | 
| 284 | 
             
                """
         | 
| 285 | 
             
                A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
         | 
|  | |
| 300 | 
             
                    ch = width // (3 * self.n_heads)
         | 
| 301 | 
             
                    q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
         | 
| 302 | 
             
                    scale = 1 / math.sqrt(math.sqrt(ch))
         | 
| 303 | 
            +
                    weight = th.einsum(
         | 
| 304 | 
            +
                        "bct,bcs->bts", q * scale, k * scale
         | 
| 305 | 
            +
                    )  # More stable with f16 than dividing afterwards
         | 
| 306 | 
             
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 307 | 
             
                    a = th.einsum("bts,bcs->bct", weight, v)
         | 
| 308 | 
             
                    return a.reshape(bs, -1, length)
         | 
| 309 |  | 
|  | |
|  | |
|  | |
|  | |
| 310 |  | 
| 311 | 
             
            class QKVAttention(nn.Module):
         | 
| 312 | 
             
                """
         | 
|  | |
| 332 | 
             
                        "bct,bcs->bts",
         | 
| 333 | 
             
                        (q * scale).view(bs * self.n_heads, ch, length),
         | 
| 334 | 
             
                        (k * scale).view(bs * self.n_heads, ch, length),
         | 
| 335 | 
            +
                    )  # More stable with f16 than dividing afterwards
         | 
| 336 | 
             
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 337 | 
             
                    a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
         | 
| 338 | 
             
                    return a.reshape(bs, -1, length)
         | 
| 339 |  | 
|  | |
|  | |
|  | |
| 340 |  | 
| 341 | 
            +
            class MultiViewUNetModel(ModelMixin, ConfigMixin):
         | 
|  | |
| 342 | 
             
                """
         | 
| 343 | 
             
                The full multi-view UNet model with attention, timestep embedding and camera embedding.
         | 
| 344 | 
             
                :param in_channels: channels in the input Tensor.
         | 
|  | |
| 370 | 
             
                """
         | 
| 371 |  | 
| 372 | 
             
                def __init__(
         | 
| 373 | 
            +
                    self,
         | 
| 374 | 
            +
                    image_size,
         | 
| 375 | 
            +
                    in_channels,
         | 
| 376 | 
            +
                    model_channels,
         | 
| 377 | 
            +
                    out_channels,
         | 
| 378 | 
            +
                    num_res_blocks,
         | 
| 379 | 
            +
                    attention_resolutions,
         | 
| 380 | 
            +
                    dropout=0,
         | 
| 381 | 
            +
                    channel_mult=(1, 2, 4, 8),
         | 
| 382 | 
            +
                    conv_resample=True,
         | 
| 383 | 
            +
                    dims=2,
         | 
| 384 | 
            +
                    num_classes=None,
         | 
| 385 | 
            +
                    use_checkpoint=False,
         | 
| 386 | 
            +
                    num_heads=-1,
         | 
| 387 | 
            +
                    num_head_channels=-1,
         | 
| 388 | 
            +
                    num_heads_upsample=-1,
         | 
| 389 | 
            +
                    use_scale_shift_norm=False,
         | 
| 390 | 
            +
                    resblock_updown=False,
         | 
| 391 | 
            +
                    use_new_attention_order=False,
         | 
| 392 | 
            +
                    use_spatial_transformer=False,  # custom transformer support
         | 
| 393 | 
            +
                    transformer_depth=1,  # custom transformer support
         | 
| 394 | 
            +
                    context_dim=None,  # custom transformer support
         | 
| 395 | 
            +
                    n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
         | 
| 396 | 
            +
                    legacy=True,
         | 
| 397 | 
            +
                    disable_self_attentions=None,
         | 
| 398 | 
            +
                    num_attention_blocks=None,
         | 
| 399 | 
            +
                    disable_middle_self_attn=False,
         | 
| 400 | 
            +
                    use_linear_in_transformer=False,
         | 
| 401 | 
            +
                    adm_in_channels=None,
         | 
| 402 | 
            +
                    camera_dim=None,
         | 
| 403 | 
             
                ):
         | 
| 404 | 
             
                    super().__init__()
         | 
| 405 | 
             
                    if use_spatial_transformer:
         | 
| 406 | 
            +
                        assert (
         | 
| 407 | 
            +
                            context_dim is not None
         | 
| 408 | 
            +
                        ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
         | 
| 409 |  | 
| 410 | 
             
                    if context_dim is not None:
         | 
| 411 | 
            +
                        assert (
         | 
| 412 | 
            +
                            use_spatial_transformer
         | 
| 413 | 
            +
                        ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
         | 
| 414 | 
             
                        from omegaconf.listconfig import ListConfig
         | 
| 415 | 
            +
             | 
| 416 | 
             
                        if type(context_dim) == ListConfig:
         | 
| 417 | 
             
                            context_dim = list(context_dim)
         | 
| 418 |  | 
|  | |
| 420 | 
             
                        num_heads_upsample = num_heads
         | 
| 421 |  | 
| 422 | 
             
                    if num_heads == -1:
         | 
| 423 | 
            +
                        assert (
         | 
| 424 | 
            +
                            num_head_channels != -1
         | 
| 425 | 
            +
                        ), "Either num_heads or num_head_channels has to be set"
         | 
| 426 |  | 
| 427 | 
             
                    if num_head_channels == -1:
         | 
| 428 | 
            +
                        assert (
         | 
| 429 | 
            +
                            num_heads != -1
         | 
| 430 | 
            +
                        ), "Either num_heads or num_head_channels has to be set"
         | 
| 431 |  | 
| 432 | 
             
                    self.image_size = image_size
         | 
| 433 | 
             
                    self.in_channels = in_channels
         | 
|  | |
| 437 | 
             
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         | 
| 438 | 
             
                    else:
         | 
| 439 | 
             
                        if len(num_res_blocks) != len(channel_mult):
         | 
| 440 | 
            +
                            raise ValueError(
         | 
| 441 | 
            +
                                "provide num_res_blocks either as an int (globally constant) or "
         | 
| 442 | 
            +
                                "as a list/tuple (per-level) with the same length as channel_mult"
         | 
| 443 | 
            +
                            )
         | 
| 444 | 
             
                        self.num_res_blocks = num_res_blocks
         | 
| 445 | 
             
                    if disable_self_attentions is not None:
         | 
| 446 | 
             
                        # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
         | 
| 447 | 
             
                        assert len(disable_self_attentions) == len(channel_mult)
         | 
| 448 | 
             
                    if num_attention_blocks is not None:
         | 
| 449 | 
             
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         | 
| 450 | 
            +
                        assert all(
         | 
| 451 | 
            +
                            map(
         | 
| 452 | 
            +
                                lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
         | 
| 453 | 
            +
                                range(len(num_attention_blocks)),
         | 
| 454 | 
            +
                            )
         | 
| 455 | 
            +
                        )
         | 
| 456 | 
            +
                        print(
         | 
| 457 | 
            +
                            f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
         | 
| 458 | 
            +
                            f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
         | 
| 459 | 
            +
                            f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
         | 
| 460 | 
            +
                            f"attention will still not be set."
         | 
| 461 | 
            +
                        )
         | 
| 462 |  | 
| 463 | 
             
                    self.attention_resolutions = attention_resolutions
         | 
| 464 | 
             
                    self.dropout = dropout
         | 
|  | |
| 494 | 
             
                            self.label_emb = nn.Linear(1, time_embed_dim)
         | 
| 495 | 
             
                        elif self.num_classes == "sequential":
         | 
| 496 | 
             
                            assert adm_in_channels is not None
         | 
| 497 | 
            +
                            self.label_emb = nn.Sequential(
         | 
| 498 | 
            +
                                nn.Sequential(
         | 
| 499 | 
            +
                                    nn.Linear(adm_in_channels, time_embed_dim),
         | 
| 500 | 
            +
                                    nn.SiLU(),
         | 
| 501 | 
            +
                                    nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 502 | 
            +
                                )
         | 
| 503 | 
            +
                            )
         | 
| 504 | 
             
                        else:
         | 
| 505 | 
             
                            raise ValueError()
         | 
| 506 |  | 
| 507 | 
            +
                    self.input_blocks = nn.ModuleList(
         | 
| 508 | 
            +
                        [
         | 
| 509 | 
            +
                            TimestepEmbedSequential(
         | 
| 510 | 
            +
                                conv_nd(dims, in_channels, model_channels, 3, padding=1)
         | 
| 511 | 
            +
                            )
         | 
| 512 | 
            +
                        ]
         | 
| 513 | 
            +
                    )
         | 
| 514 | 
             
                    self._feature_size = model_channels
         | 
| 515 | 
             
                    input_block_chans = [model_channels]
         | 
| 516 | 
             
                    ch = model_channels
         | 
| 517 | 
             
                    ds = 1
         | 
| 518 | 
             
                    for level, mult in enumerate(channel_mult):
         | 
| 519 | 
             
                        for nr in range(self.num_res_blocks[level]):
         | 
| 520 | 
            +
                            layers: List[Any] = [
         | 
| 521 | 
            +
                                ResBlock(
         | 
| 522 | 
            +
                                    ch,
         | 
| 523 | 
            +
                                    time_embed_dim,
         | 
| 524 | 
            +
                                    dropout,
         | 
| 525 | 
            +
                                    out_channels=mult * model_channels,
         | 
| 526 | 
            +
                                    dims=dims,
         | 
| 527 | 
            +
                                    use_checkpoint=use_checkpoint,
         | 
| 528 | 
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 529 | 
            +
                                )
         | 
| 530 | 
            +
                            ]
         | 
| 531 | 
             
                            ch = mult * model_channels
         | 
| 532 | 
             
                            if ds in attention_resolutions:
         | 
| 533 | 
             
                                if num_head_channels == -1:
         | 
|  | |
| 536 | 
             
                                    num_heads = ch // num_head_channels
         | 
| 537 | 
             
                                    dim_head = num_head_channels
         | 
| 538 | 
             
                                if legacy:
         | 
| 539 | 
            +
                                    # num_heads = 1
         | 
| 540 | 
            +
                                    dim_head = (
         | 
| 541 | 
            +
                                        ch // num_heads
         | 
| 542 | 
            +
                                        if use_spatial_transformer
         | 
| 543 | 
            +
                                        else num_head_channels
         | 
| 544 | 
            +
                                    )
         | 
| 545 | 
             
                                if disable_self_attentions is not None:
         | 
| 546 | 
             
                                    disabled_sa = disable_self_attentions[level]
         | 
| 547 | 
             
                                else:
         | 
| 548 | 
             
                                    disabled_sa = False
         | 
| 549 |  | 
| 550 | 
             
                                if num_attention_blocks is None or nr < num_attention_blocks[level]:
         | 
| 551 | 
            +
                                    layers.append(
         | 
| 552 | 
            +
                                        AttentionBlock(
         | 
| 553 | 
            +
                                            ch,
         | 
| 554 | 
            +
                                            use_checkpoint=use_checkpoint,
         | 
| 555 | 
            +
                                            num_heads=num_heads,
         | 
| 556 | 
            +
                                            num_head_channels=dim_head,
         | 
| 557 | 
            +
                                            use_new_attention_order=use_new_attention_order,
         | 
| 558 | 
            +
                                        )
         | 
| 559 | 
            +
                                        if not use_spatial_transformer
         | 
| 560 | 
            +
                                        else SpatialTransformer3D(
         | 
| 561 | 
            +
                                            ch,
         | 
| 562 | 
            +
                                            num_heads,
         | 
| 563 | 
            +
                                            dim_head,
         | 
| 564 | 
            +
                                            depth=transformer_depth,
         | 
| 565 | 
            +
                                            context_dim=context_dim,
         | 
| 566 | 
            +
                                            disable_self_attn=disabled_sa,
         | 
| 567 | 
            +
                                            use_linear=use_linear_in_transformer,
         | 
| 568 | 
            +
                                            use_checkpoint=use_checkpoint,
         | 
| 569 | 
            +
                                        )
         | 
| 570 | 
            +
                                    )
         | 
| 571 | 
             
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         | 
| 572 | 
             
                            self._feature_size += ch
         | 
| 573 | 
             
                            input_block_chans.append(ch)
         | 
| 574 | 
             
                        if level != len(channel_mult) - 1:
         | 
| 575 | 
             
                            out_ch = ch
         | 
| 576 | 
            +
                            self.input_blocks.append(
         | 
| 577 | 
            +
                                TimestepEmbedSequential(
         | 
| 578 | 
            +
                                    ResBlock(
         | 
| 579 | 
            +
                                        ch,
         | 
| 580 | 
            +
                                        time_embed_dim,
         | 
| 581 | 
            +
                                        dropout,
         | 
| 582 | 
            +
                                        out_channels=out_ch,
         | 
| 583 | 
            +
                                        dims=dims,
         | 
| 584 | 
            +
                                        use_checkpoint=use_checkpoint,
         | 
| 585 | 
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 586 | 
            +
                                        down=True,
         | 
| 587 | 
            +
                                    )
         | 
| 588 | 
            +
                                    if resblock_updown
         | 
| 589 | 
            +
                                    else Downsample(
         | 
| 590 | 
            +
                                        ch, conv_resample, dims=dims, out_channels=out_ch
         | 
| 591 | 
            +
                                    )
         | 
| 592 | 
            +
                                )
         | 
| 593 | 
            +
                            )
         | 
| 594 | 
             
                            ch = out_ch
         | 
| 595 | 
             
                            input_block_chans.append(ch)
         | 
| 596 | 
             
                            ds *= 2
         | 
|  | |
| 602 | 
             
                        num_heads = ch // num_head_channels
         | 
| 603 | 
             
                        dim_head = num_head_channels
         | 
| 604 | 
             
                    if legacy:
         | 
| 605 | 
            +
                        # num_heads = 1
         | 
| 606 | 
             
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         | 
| 607 | 
             
                    self.middle_block = TimestepEmbedSequential(
         | 
| 608 | 
             
                        ResBlock(
         | 
|  | |
| 619 | 
             
                            num_heads=num_heads,
         | 
| 620 | 
             
                            num_head_channels=dim_head,
         | 
| 621 | 
             
                            use_new_attention_order=use_new_attention_order,
         | 
| 622 | 
            +
                        )
         | 
| 623 | 
            +
                        if not use_spatial_transformer
         | 
| 624 | 
            +
                        else SpatialTransformer3D(
         | 
| 625 | 
            +
                            ch,
         | 
| 626 | 
            +
                            num_heads,
         | 
| 627 | 
            +
                            dim_head,
         | 
| 628 | 
            +
                            depth=transformer_depth,
         | 
| 629 | 
            +
                            context_dim=context_dim,
         | 
| 630 | 
            +
                            disable_self_attn=disable_middle_self_attn,
         | 
| 631 | 
            +
                            use_linear=use_linear_in_transformer,
         | 
| 632 | 
            +
                            use_checkpoint=use_checkpoint,
         | 
| 633 | 
            +
                        ),  # always uses a self-attn
         | 
| 634 | 
             
                        ResBlock(
         | 
| 635 | 
             
                            ch,
         | 
| 636 | 
             
                            time_embed_dim,
         | 
|  | |
| 646 | 
             
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         | 
| 647 | 
             
                        for i in range(self.num_res_blocks[level] + 1):
         | 
| 648 | 
             
                            ich = input_block_chans.pop()
         | 
| 649 | 
            +
                            layers = [
         | 
| 650 | 
            +
                                ResBlock(
         | 
| 651 | 
            +
                                    ch + ich,
         | 
| 652 | 
            +
                                    time_embed_dim,
         | 
| 653 | 
            +
                                    dropout,
         | 
| 654 | 
            +
                                    out_channels=model_channels * mult,
         | 
| 655 | 
            +
                                    dims=dims,
         | 
| 656 | 
            +
                                    use_checkpoint=use_checkpoint,
         | 
| 657 | 
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 658 | 
            +
                                )
         | 
| 659 | 
            +
                            ]
         | 
| 660 | 
             
                            ch = model_channels * mult
         | 
| 661 | 
             
                            if ds in attention_resolutions:
         | 
| 662 | 
             
                                if num_head_channels == -1:
         | 
|  | |
| 665 | 
             
                                    num_heads = ch // num_head_channels
         | 
| 666 | 
             
                                    dim_head = num_head_channels
         | 
| 667 | 
             
                                if legacy:
         | 
| 668 | 
            +
                                    # num_heads = 1
         | 
| 669 | 
            +
                                    dim_head = (
         | 
| 670 | 
            +
                                        ch // num_heads
         | 
| 671 | 
            +
                                        if use_spatial_transformer
         | 
| 672 | 
            +
                                        else num_head_channels
         | 
| 673 | 
            +
                                    )
         | 
| 674 | 
             
                                if disable_self_attentions is not None:
         | 
| 675 | 
             
                                    disabled_sa = disable_self_attentions[level]
         | 
| 676 | 
             
                                else:
         | 
| 677 | 
             
                                    disabled_sa = False
         | 
| 678 |  | 
| 679 | 
             
                                if num_attention_blocks is None or i < num_attention_blocks[level]:
         | 
| 680 | 
            +
                                    layers.append(
         | 
| 681 | 
            +
                                        AttentionBlock(
         | 
| 682 | 
            +
                                            ch,
         | 
| 683 | 
            +
                                            use_checkpoint=use_checkpoint,
         | 
| 684 | 
            +
                                            num_heads=num_heads_upsample,
         | 
| 685 | 
            +
                                            num_head_channels=dim_head,
         | 
| 686 | 
            +
                                            use_new_attention_order=use_new_attention_order,
         | 
| 687 | 
            +
                                        )
         | 
| 688 | 
            +
                                        if not use_spatial_transformer
         | 
| 689 | 
            +
                                        else SpatialTransformer3D(
         | 
| 690 | 
            +
                                            ch,
         | 
| 691 | 
            +
                                            num_heads,
         | 
| 692 | 
            +
                                            dim_head,
         | 
| 693 | 
            +
                                            depth=transformer_depth,
         | 
| 694 | 
            +
                                            context_dim=context_dim,
         | 
| 695 | 
            +
                                            disable_self_attn=disabled_sa,
         | 
| 696 | 
            +
                                            use_linear=use_linear_in_transformer,
         | 
| 697 | 
            +
                                            use_checkpoint=use_checkpoint,
         | 
| 698 | 
            +
                                        )
         | 
| 699 | 
            +
                                    )
         | 
| 700 | 
             
                            if level and i == self.num_res_blocks[level]:
         | 
| 701 | 
             
                                out_ch = ch
         | 
| 702 | 
            +
                                layers.append(
         | 
| 703 | 
            +
                                    ResBlock(
         | 
| 704 | 
            +
                                        ch,
         | 
| 705 | 
            +
                                        time_embed_dim,
         | 
| 706 | 
            +
                                        dropout,
         | 
| 707 | 
            +
                                        out_channels=out_ch,
         | 
| 708 | 
            +
                                        dims=dims,
         | 
| 709 | 
            +
                                        use_checkpoint=use_checkpoint,
         | 
| 710 | 
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 711 | 
            +
                                        up=True,
         | 
| 712 | 
            +
                                    )
         | 
| 713 | 
            +
                                    if resblock_updown
         | 
| 714 | 
            +
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         | 
| 715 | 
            +
                                )
         | 
| 716 | 
             
                                ds //= 2
         | 
| 717 | 
             
                            self.output_blocks.append(TimestepEmbedSequential(*layers))
         | 
| 718 | 
             
                            self._feature_size += ch
         | 
|  | |
| 726 | 
             
                        self.id_predictor = nn.Sequential(
         | 
| 727 | 
             
                            nn.GroupNorm(32, ch),
         | 
| 728 | 
             
                            conv_nd(dims, model_channels, n_embed, 1),
         | 
| 729 | 
            +
                            # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         | 
| 730 | 
             
                        )
         | 
| 731 |  | 
| 732 | 
            +
                def forward(
         | 
| 733 | 
            +
                    self,
         | 
| 734 | 
            +
                    x,
         | 
| 735 | 
            +
                    timesteps=None,
         | 
| 736 | 
            +
                    context=None,
         | 
| 737 | 
            +
                    y: Optional[Tensor] = None,
         | 
| 738 | 
            +
                    camera=None,
         | 
| 739 | 
            +
                    num_frames=1,
         | 
| 740 | 
            +
                    **kwargs,
         | 
| 741 | 
            +
                ):
         | 
| 742 | 
             
                    """
         | 
| 743 | 
             
                    Apply the model to an input batch.
         | 
| 744 | 
             
                    :param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
         | 
|  | |
| 748 | 
             
                    :param num_frames: a integer indicating number of frames for tensor reshaping.
         | 
| 749 | 
             
                    :return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
         | 
| 750 | 
             
                    """
         | 
| 751 | 
            +
                    assert (
         | 
| 752 | 
            +
                        x.shape[0] % num_frames == 0
         | 
| 753 | 
            +
                    ), "[UNet] input batch size must be dividable by num_frames!"
         | 
| 754 | 
            +
                    assert (y is not None) == (
         | 
| 755 | 
            +
                        self.num_classes is not None
         | 
| 756 | 
            +
                    ), "must specify y if and only if the model is class-conditional"
         | 
| 757 | 
             
                    hs = []
         | 
| 758 | 
            +
                    t_emb = timestep_embedding(
         | 
| 759 | 
            +
                        timesteps, self.model_channels, repeat_only=False
         | 
| 760 | 
            +
                    ).to(x.dtype)
         | 
| 761 | 
            +
             | 
| 762 | 
             
                    emb = self.time_embed(t_emb)
         | 
| 763 |  | 
| 764 | 
             
                    if self.num_classes is not None:
         | 
    	
        mvdream/pipeline_mvdream.py
    CHANGED
    
    | @@ -1,6 +1,6 @@ | |
| 1 | 
             
            import torch
         | 
| 2 | 
            -
            import numpy as np
         | 
| 3 | 
             
            import inspect
         | 
|  | |
| 4 | 
             
            from typing import Callable, List, Optional, Union
         | 
| 5 | 
             
            from transformers import CLIPTextModel, CLIPTokenizer
         | 
| 6 | 
             
            from diffusers import AutoencoderKL, DiffusionPipeline
         | 
| @@ -12,15 +12,12 @@ from diffusers.utils import ( | |
| 12 | 
             
            )
         | 
| 13 | 
             
            from diffusers.configuration_utils import FrozenDict
         | 
| 14 | 
             
            from diffusers.schedulers import DDIMScheduler
         | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
                from diffusers.utils.torch_utils import randn_tensor # new import # type: ignore
         | 
| 19 |  | 
| 20 | 
            -
             | 
| 21 | 
            -
            from accelerate.utils import set_module_tensor_to_device
         | 
| 22 |  | 
| 23 | 
            -
            logger = logging.get_logger(__name__) # pylint: disable=invalid-name
         | 
| 24 |  | 
| 25 | 
             
            def create_camera_to_world_matrix(elevation, azimuth):
         | 
| 26 | 
             
                elevation = np.radians(elevation)
         | 
| @@ -55,14 +52,18 @@ def convert_opengl_to_blender(camera_matrix): | |
| 55 | 
             
                    camera_matrix_blender = np.dot(flip_yz, camera_matrix)
         | 
| 56 | 
             
                else:
         | 
| 57 | 
             
                    # Construct transformation matrix to convert from OpenGL space to Blender space
         | 
| 58 | 
            -
                    flip_yz = torch.tensor( | 
|  | |
|  | |
| 59 | 
             
                    if camera_matrix.ndim == 3:
         | 
| 60 | 
             
                        flip_yz = flip_yz.unsqueeze(0)
         | 
| 61 | 
             
                    camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
         | 
| 62 | 
             
                return camera_matrix_blender
         | 
| 63 |  | 
| 64 |  | 
| 65 | 
            -
            def get_camera( | 
|  | |
|  | |
| 66 | 
             
                angle_gap = azimuth_span / num_frames
         | 
| 67 | 
             
                cameras = []
         | 
| 68 | 
             
                for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
         | 
| @@ -74,11 +75,10 @@ def get_camera(num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blen | |
| 74 |  | 
| 75 |  | 
| 76 | 
             
            class MVDreamStableDiffusionPipeline(DiffusionPipeline):
         | 
| 77 | 
            -
             | 
| 78 | 
             
                def __init__(
         | 
| 79 | 
             
                    self,
         | 
| 80 | 
             
                    vae: AutoencoderKL,
         | 
| 81 | 
            -
                    unet:  | 
| 82 | 
             
                    tokenizer: CLIPTokenizer,
         | 
| 83 | 
             
                    text_encoder: CLIPTextModel,
         | 
| 84 | 
             
                    scheduler: DDIMScheduler,
         | 
| @@ -86,25 +86,33 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 86 | 
             
                ):
         | 
| 87 | 
             
                    super().__init__()
         | 
| 88 |  | 
| 89 | 
            -
                    if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | 
| 90 | 
            -
                        deprecation_message = ( | 
| 91 | 
            -
             | 
| 92 | 
            -
             | 
| 93 | 
            -
             | 
| 94 | 
            -
             | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 97 | 
             
                        new_config = dict(scheduler.config)
         | 
| 98 | 
             
                        new_config["steps_offset"] = 1
         | 
| 99 | 
             
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| 100 |  | 
| 101 | 
            -
                    if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | 
| 102 | 
            -
                        deprecation_message = ( | 
| 103 | 
            -
             | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 108 | 
             
                        new_config = dict(scheduler.config)
         | 
| 109 | 
             
                        new_config["clip_sample"] = False
         | 
| 110 | 
             
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| @@ -116,7 +124,7 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 116 | 
             
                        tokenizer=tokenizer,
         | 
| 117 | 
             
                        text_encoder=text_encoder,
         | 
| 118 | 
             
                    )
         | 
| 119 | 
            -
                    self.vae_scale_factor = 2**(len(self.vae.config.block_out_channels) - 1)
         | 
| 120 | 
             
                    self.register_to_config(requires_safety_checker=requires_safety_checker)
         | 
| 121 |  | 
| 122 | 
             
                def enable_vae_slicing(self):
         | 
| @@ -162,13 +170,15 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 162 | 
             
                    if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
         | 
| 163 | 
             
                        from accelerate import cpu_offload
         | 
| 164 | 
             
                    else:
         | 
| 165 | 
            -
                        raise ImportError( | 
|  | |
|  | |
| 166 |  | 
| 167 | 
             
                    device = torch.device(f"cuda:{gpu_id}")
         | 
| 168 |  | 
| 169 | 
             
                    if self.device.type != "cpu":
         | 
| 170 | 
             
                        self.to("cpu", silence_dtype_warnings=True)
         | 
| 171 | 
            -
                        torch.cuda.empty_cache() | 
| 172 |  | 
| 173 | 
             
                    for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
         | 
| 174 | 
             
                        cpu_offload(cpu_offloaded_model, device)
         | 
| @@ -183,17 +193,21 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 183 | 
             
                    if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
         | 
| 184 | 
             
                        from accelerate import cpu_offload_with_hook
         | 
| 185 | 
             
                    else:
         | 
| 186 | 
            -
                        raise ImportError( | 
|  | |
|  | |
| 187 |  | 
| 188 | 
             
                    device = torch.device(f"cuda:{gpu_id}")
         | 
| 189 |  | 
| 190 | 
             
                    if self.device.type != "cpu":
         | 
| 191 | 
             
                        self.to("cpu", silence_dtype_warnings=True)
         | 
| 192 | 
            -
                        torch.cuda.empty_cache() | 
| 193 |  | 
| 194 | 
             
                    hook = None
         | 
| 195 | 
             
                    for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
         | 
| 196 | 
            -
                        _, hook = cpu_offload_with_hook( | 
|  | |
|  | |
| 197 |  | 
| 198 | 
             
                    # We'll offload the last model manually.
         | 
| 199 | 
             
                    self.final_offload_hook = hook
         | 
| @@ -208,7 +222,11 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 208 | 
             
                    if not hasattr(self.unet, "_hf_hook"):
         | 
| 209 | 
             
                        return self.device
         | 
| 210 | 
             
                    for module in self.unet.modules():
         | 
| 211 | 
            -
                        if ( | 
|  | |
|  | |
|  | |
|  | |
| 212 | 
             
                            return torch.device(module._hf_hook.execution_device)
         | 
| 213 | 
             
                    return self.device
         | 
| 214 |  | 
| @@ -249,7 +267,9 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 249 | 
             
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 250 | 
             
                        batch_size = len(prompt)
         | 
| 251 | 
             
                    else:
         | 
| 252 | 
            -
                        raise ValueError( | 
|  | |
|  | |
| 253 |  | 
| 254 | 
             
                    text_inputs = self.tokenizer(
         | 
| 255 | 
             
                        prompt,
         | 
| @@ -259,14 +279,25 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 259 | 
             
                        return_tensors="pt",
         | 
| 260 | 
             
                    )
         | 
| 261 | 
             
                    text_input_ids = text_inputs.input_ids
         | 
| 262 | 
            -
                    untruncated_ids = self.tokenizer( | 
| 263 | 
            -
             | 
| 264 | 
            -
                     | 
| 265 | 
            -
             | 
| 266 | 
            -
             | 
| 267 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 268 |  | 
| 269 | 
            -
                    if  | 
|  | |
|  | |
|  | |
| 270 | 
             
                        attention_mask = text_inputs.attention_mask.to(device)
         | 
| 271 | 
             
                    else:
         | 
| 272 | 
             
                        attention_mask = None
         | 
| @@ -282,7 +313,9 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 282 | 
             
                    bs_embed, seq_len, _ = prompt_embeds.shape
         | 
| 283 | 
             
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 284 | 
             
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 285 | 
            -
                    prompt_embeds = prompt_embeds.view( | 
|  | |
|  | |
| 286 |  | 
| 287 | 
             
                    # get unconditional embeddings for classifier free guidance
         | 
| 288 | 
             
                    if do_classifier_free_guidance:
         | 
| @@ -290,14 +323,18 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 290 | 
             
                        if negative_prompt is None:
         | 
| 291 | 
             
                            uncond_tokens = [""] * batch_size
         | 
| 292 | 
             
                        elif type(prompt) is not type(negative_prompt):
         | 
| 293 | 
            -
                            raise TypeError( | 
| 294 | 
            -
             | 
|  | |
|  | |
| 295 | 
             
                        elif isinstance(negative_prompt, str):
         | 
| 296 | 
             
                            uncond_tokens = [negative_prompt]
         | 
| 297 | 
             
                        elif batch_size != len(negative_prompt):
         | 
| 298 | 
            -
                            raise ValueError( | 
| 299 | 
            -
             | 
| 300 | 
            -
             | 
|  | |
|  | |
| 301 | 
             
                        else:
         | 
| 302 | 
             
                            uncond_tokens = negative_prompt
         | 
| 303 |  | 
| @@ -310,7 +347,10 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 310 | 
             
                            return_tensors="pt",
         | 
| 311 | 
             
                        )
         | 
| 312 |  | 
| 313 | 
            -
                        if  | 
|  | |
|  | |
|  | |
| 314 | 
             
                            attention_mask = uncond_input.attention_mask.to(device)
         | 
| 315 | 
             
                        else:
         | 
| 316 | 
             
                            attention_mask = None
         | 
| @@ -324,10 +364,16 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 324 | 
             
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         | 
| 325 | 
             
                        seq_len = negative_prompt_embeds.shape[1]
         | 
| 326 |  | 
| 327 | 
            -
                        negative_prompt_embeds = negative_prompt_embeds.to( | 
|  | |
|  | |
| 328 |  | 
| 329 | 
            -
                        negative_prompt_embeds = negative_prompt_embeds.repeat( | 
| 330 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 331 |  | 
| 332 | 
             
                        # For classifier free guidance, we need to do two forward passes.
         | 
| 333 | 
             
                        # Here we concatenate the unconditional and text embeddings into a single batch
         | 
| @@ -350,25 +396,48 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 350 | 
             
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 351 | 
             
                    # and should be between [0, 1]
         | 
| 352 |  | 
| 353 | 
            -
                    accepts_eta = "eta" in set( | 
|  | |
|  | |
| 354 | 
             
                    extra_step_kwargs = {}
         | 
| 355 | 
             
                    if accepts_eta:
         | 
| 356 | 
             
                        extra_step_kwargs["eta"] = eta
         | 
| 357 |  | 
| 358 | 
             
                    # check if the scheduler accepts generator
         | 
| 359 | 
            -
                    accepts_generator = "generator" in set( | 
|  | |
|  | |
| 360 | 
             
                    if accepts_generator:
         | 
| 361 | 
             
                        extra_step_kwargs["generator"] = generator
         | 
| 362 | 
             
                    return extra_step_kwargs
         | 
| 363 |  | 
| 364 | 
            -
                def prepare_latents( | 
| 365 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 366 | 
             
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 367 | 
            -
                        raise ValueError( | 
| 368 | 
            -
             | 
|  | |
|  | |
| 369 |  | 
| 370 | 
             
                    if latents is None:
         | 
| 371 | 
            -
                        latents = randn_tensor( | 
|  | |
|  | |
| 372 | 
             
                    else:
         | 
| 373 | 
             
                        latents = latents.to(device)
         | 
| 374 |  | 
| @@ -392,14 +461,13 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 392 | 
             
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         | 
| 393 | 
             
                    callback_steps: int = 1,
         | 
| 394 | 
             
                    batch_size: int = 4,
         | 
| 395 | 
            -
                    device | 
| 396 | 
             
                ):
         | 
| 397 | 
             
                    self.unet = self.unet.to(device=device)
         | 
| 398 | 
             
                    self.vae = self.vae.to(device=device)
         | 
| 399 |  | 
| 400 | 
             
                    self.text_encoder = self.text_encoder.to(device=device)
         | 
| 401 |  | 
| 402 | 
            -
             | 
| 403 | 
             
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 404 | 
             
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 405 | 
             
                    # corresponds to doing no classifier free guidance.
         | 
| @@ -415,7 +483,7 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 415 | 
             
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 416 | 
             
                        do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 417 | 
             
                        negative_prompt=negative_prompt,
         | 
| 418 | 
            -
                    ) | 
| 419 | 
             
                    prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
         | 
| 420 |  | 
| 421 | 
             
                    # Prepare latent variables
         | 
| @@ -429,7 +497,7 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 429 | 
             
                        generator,
         | 
| 430 | 
             
                        None,
         | 
| 431 | 
             
                    )
         | 
| 432 | 
            -
             | 
| 433 | 
             
                    camera = get_camera(batch_size).to(dtype=latents.dtype, device=device)
         | 
| 434 |  | 
| 435 | 
             
                    # Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| @@ -442,13 +510,21 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 442 | 
             
                            # expand the latents if we are doing classifier free guidance
         | 
| 443 | 
             
                            multiplier = 2 if do_classifier_free_guidance else 1
         | 
| 444 | 
             
                            latent_model_input = torch.cat([latents] * multiplier)
         | 
| 445 | 
            -
                            latent_model_input = self.scheduler.scale_model_input( | 
|  | |
|  | |
| 446 |  | 
| 447 | 
             
                            # predict the noise residual
         | 
| 448 | 
             
                            noise_pred = self.unet.forward(
         | 
| 449 | 
             
                                x=latent_model_input,
         | 
| 450 | 
            -
                                timesteps=torch.tensor( | 
| 451 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 452 | 
             
                                num_frames=4,
         | 
| 453 | 
             
                                camera=torch.cat([camera] * multiplier),
         | 
| 454 | 
             
                            )
         | 
| @@ -456,17 +532,23 @@ class MVDreamStableDiffusionPipeline(DiffusionPipeline): | |
| 456 | 
             
                            # perform guidance
         | 
| 457 | 
             
                            if do_classifier_free_guidance:
         | 
| 458 | 
             
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 459 | 
            -
                                noise_pred = noise_pred_uncond + guidance_scale * ( | 
|  | |
|  | |
| 460 |  | 
| 461 | 
             
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 462 | 
             
                            # latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype)
         | 
| 463 | 
            -
                            latents: torch.Tensor = self.scheduler.step( | 
|  | |
|  | |
| 464 |  | 
| 465 | 
             
                            # call the callback, if provided
         | 
| 466 | 
            -
                            if i == len(timesteps) - 1 or ( | 
|  | |
|  | |
| 467 | 
             
                                progress_bar.update()
         | 
| 468 | 
             
                                if callback is not None and i % callback_steps == 0:
         | 
| 469 | 
            -
                                    callback(i, t, latents) | 
| 470 |  | 
| 471 | 
             
                    # Post-processing
         | 
| 472 | 
             
                    if output_type == "latent":
         | 
|  | |
| 1 | 
             
            import torch
         | 
|  | |
| 2 | 
             
            import inspect
         | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
             
            from typing import Callable, List, Optional, Union
         | 
| 5 | 
             
            from transformers import CLIPTextModel, CLIPTokenizer
         | 
| 6 | 
             
            from diffusers import AutoencoderKL, DiffusionPipeline
         | 
|  | |
| 12 | 
             
            )
         | 
| 13 | 
             
            from diffusers.configuration_utils import FrozenDict
         | 
| 14 | 
             
            from diffusers.schedulers import DDIMScheduler
         | 
| 15 | 
            +
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from .models import MultiViewUNetModel
         | 
|  | |
| 18 |  | 
| 19 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
|  | |
| 20 |  | 
|  | |
| 21 |  | 
| 22 | 
             
            def create_camera_to_world_matrix(elevation, azimuth):
         | 
| 23 | 
             
                elevation = np.radians(elevation)
         | 
|  | |
| 52 | 
             
                    camera_matrix_blender = np.dot(flip_yz, camera_matrix)
         | 
| 53 | 
             
                else:
         | 
| 54 | 
             
                    # Construct transformation matrix to convert from OpenGL space to Blender space
         | 
| 55 | 
            +
                    flip_yz = torch.tensor(
         | 
| 56 | 
            +
                        [[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
         | 
| 57 | 
            +
                    )
         | 
| 58 | 
             
                    if camera_matrix.ndim == 3:
         | 
| 59 | 
             
                        flip_yz = flip_yz.unsqueeze(0)
         | 
| 60 | 
             
                    camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
         | 
| 61 | 
             
                return camera_matrix_blender
         | 
| 62 |  | 
| 63 |  | 
| 64 | 
            +
            def get_camera(
         | 
| 65 | 
            +
                num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True
         | 
| 66 | 
            +
            ):
         | 
| 67 | 
             
                angle_gap = azimuth_span / num_frames
         | 
| 68 | 
             
                cameras = []
         | 
| 69 | 
             
                for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
         | 
|  | |
| 75 |  | 
| 76 |  | 
| 77 | 
             
            class MVDreamStableDiffusionPipeline(DiffusionPipeline):
         | 
|  | |
| 78 | 
             
                def __init__(
         | 
| 79 | 
             
                    self,
         | 
| 80 | 
             
                    vae: AutoencoderKL,
         | 
| 81 | 
            +
                    unet: MultiViewUNetModel,
         | 
| 82 | 
             
                    tokenizer: CLIPTokenizer,
         | 
| 83 | 
             
                    text_encoder: CLIPTextModel,
         | 
| 84 | 
             
                    scheduler: DDIMScheduler,
         | 
|  | |
| 86 | 
             
                ):
         | 
| 87 | 
             
                    super().__init__()
         | 
| 88 |  | 
| 89 | 
            +
                    if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:  # type: ignore
         | 
| 90 | 
            +
                        deprecation_message = (
         | 
| 91 | 
            +
                            f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
         | 
| 92 | 
            +
                            f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "  # type: ignore
         | 
| 93 | 
            +
                            "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
         | 
| 94 | 
            +
                            " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
         | 
| 95 | 
            +
                            " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
         | 
| 96 | 
            +
                            " file"
         | 
| 97 | 
            +
                        )
         | 
| 98 | 
            +
                        deprecate(
         | 
| 99 | 
            +
                            "steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
         | 
| 100 | 
            +
                        )
         | 
| 101 | 
             
                        new_config = dict(scheduler.config)
         | 
| 102 | 
             
                        new_config["steps_offset"] = 1
         | 
| 103 | 
             
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| 104 |  | 
| 105 | 
            +
                    if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:  # type: ignore
         | 
| 106 | 
            +
                        deprecation_message = (
         | 
| 107 | 
            +
                            f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
         | 
| 108 | 
            +
                            " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
         | 
| 109 | 
            +
                            " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
         | 
| 110 | 
            +
                            " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
         | 
| 111 | 
            +
                            " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
         | 
| 112 | 
            +
                        )
         | 
| 113 | 
            +
                        deprecate(
         | 
| 114 | 
            +
                            "clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
         | 
| 115 | 
            +
                        )
         | 
| 116 | 
             
                        new_config = dict(scheduler.config)
         | 
| 117 | 
             
                        new_config["clip_sample"] = False
         | 
| 118 | 
             
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
|  | |
| 124 | 
             
                        tokenizer=tokenizer,
         | 
| 125 | 
             
                        text_encoder=text_encoder,
         | 
| 126 | 
             
                    )
         | 
| 127 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 128 | 
             
                    self.register_to_config(requires_safety_checker=requires_safety_checker)
         | 
| 129 |  | 
| 130 | 
             
                def enable_vae_slicing(self):
         | 
|  | |
| 170 | 
             
                    if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
         | 
| 171 | 
             
                        from accelerate import cpu_offload
         | 
| 172 | 
             
                    else:
         | 
| 173 | 
            +
                        raise ImportError(
         | 
| 174 | 
            +
                            "`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
         | 
| 175 | 
            +
                        )
         | 
| 176 |  | 
| 177 | 
             
                    device = torch.device(f"cuda:{gpu_id}")
         | 
| 178 |  | 
| 179 | 
             
                    if self.device.type != "cpu":
         | 
| 180 | 
             
                        self.to("cpu", silence_dtype_warnings=True)
         | 
| 181 | 
            +
                        torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
         | 
| 182 |  | 
| 183 | 
             
                    for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
         | 
| 184 | 
             
                        cpu_offload(cpu_offloaded_model, device)
         | 
|  | |
| 193 | 
             
                    if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
         | 
| 194 | 
             
                        from accelerate import cpu_offload_with_hook
         | 
| 195 | 
             
                    else:
         | 
| 196 | 
            +
                        raise ImportError(
         | 
| 197 | 
            +
                            "`enable_model_offload` requires `accelerate v0.17.0` or higher."
         | 
| 198 | 
            +
                        )
         | 
| 199 |  | 
| 200 | 
             
                    device = torch.device(f"cuda:{gpu_id}")
         | 
| 201 |  | 
| 202 | 
             
                    if self.device.type != "cpu":
         | 
| 203 | 
             
                        self.to("cpu", silence_dtype_warnings=True)
         | 
| 204 | 
            +
                        torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
         | 
| 205 |  | 
| 206 | 
             
                    hook = None
         | 
| 207 | 
             
                    for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
         | 
| 208 | 
            +
                        _, hook = cpu_offload_with_hook(
         | 
| 209 | 
            +
                            cpu_offloaded_model, device, prev_module_hook=hook
         | 
| 210 | 
            +
                        )
         | 
| 211 |  | 
| 212 | 
             
                    # We'll offload the last model manually.
         | 
| 213 | 
             
                    self.final_offload_hook = hook
         | 
|  | |
| 222 | 
             
                    if not hasattr(self.unet, "_hf_hook"):
         | 
| 223 | 
             
                        return self.device
         | 
| 224 | 
             
                    for module in self.unet.modules():
         | 
| 225 | 
            +
                        if (
         | 
| 226 | 
            +
                            hasattr(module, "_hf_hook")
         | 
| 227 | 
            +
                            and hasattr(module._hf_hook, "execution_device")
         | 
| 228 | 
            +
                            and module._hf_hook.execution_device is not None
         | 
| 229 | 
            +
                        ):
         | 
| 230 | 
             
                            return torch.device(module._hf_hook.execution_device)
         | 
| 231 | 
             
                    return self.device
         | 
| 232 |  | 
|  | |
| 267 | 
             
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 268 | 
             
                        batch_size = len(prompt)
         | 
| 269 | 
             
                    else:
         | 
| 270 | 
            +
                        raise ValueError(
         | 
| 271 | 
            +
                            f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
         | 
| 272 | 
            +
                        )
         | 
| 273 |  | 
| 274 | 
             
                    text_inputs = self.tokenizer(
         | 
| 275 | 
             
                        prompt,
         | 
|  | |
| 279 | 
             
                        return_tensors="pt",
         | 
| 280 | 
             
                    )
         | 
| 281 | 
             
                    text_input_ids = text_inputs.input_ids
         | 
| 282 | 
            +
                    untruncated_ids = self.tokenizer(
         | 
| 283 | 
            +
                        prompt, padding="longest", return_tensors="pt"
         | 
| 284 | 
            +
                    ).input_ids
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
         | 
| 287 | 
            +
                        text_input_ids, untruncated_ids
         | 
| 288 | 
            +
                    ):
         | 
| 289 | 
            +
                        removed_text = self.tokenizer.batch_decode(
         | 
| 290 | 
            +
                            untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
         | 
| 291 | 
            +
                        )
         | 
| 292 | 
            +
                        logger.warning(
         | 
| 293 | 
            +
                            "The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 294 | 
            +
                            f" {self.tokenizer.model_max_length} tokens: {removed_text}"
         | 
| 295 | 
            +
                        )
         | 
| 296 |  | 
| 297 | 
            +
                    if (
         | 
| 298 | 
            +
                        hasattr(self.text_encoder.config, "use_attention_mask")
         | 
| 299 | 
            +
                        and self.text_encoder.config.use_attention_mask
         | 
| 300 | 
            +
                    ):
         | 
| 301 | 
             
                        attention_mask = text_inputs.attention_mask.to(device)
         | 
| 302 | 
             
                    else:
         | 
| 303 | 
             
                        attention_mask = None
         | 
|  | |
| 313 | 
             
                    bs_embed, seq_len, _ = prompt_embeds.shape
         | 
| 314 | 
             
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 315 | 
             
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 316 | 
            +
                    prompt_embeds = prompt_embeds.view(
         | 
| 317 | 
            +
                        bs_embed * num_images_per_prompt, seq_len, -1
         | 
| 318 | 
            +
                    )
         | 
| 319 |  | 
| 320 | 
             
                    # get unconditional embeddings for classifier free guidance
         | 
| 321 | 
             
                    if do_classifier_free_guidance:
         | 
|  | |
| 323 | 
             
                        if negative_prompt is None:
         | 
| 324 | 
             
                            uncond_tokens = [""] * batch_size
         | 
| 325 | 
             
                        elif type(prompt) is not type(negative_prompt):
         | 
| 326 | 
            +
                            raise TypeError(
         | 
| 327 | 
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 328 | 
            +
                                f" {type(prompt)}."
         | 
| 329 | 
            +
                            )
         | 
| 330 | 
             
                        elif isinstance(negative_prompt, str):
         | 
| 331 | 
             
                            uncond_tokens = [negative_prompt]
         | 
| 332 | 
             
                        elif batch_size != len(negative_prompt):
         | 
| 333 | 
            +
                            raise ValueError(
         | 
| 334 | 
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 335 | 
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 336 | 
            +
                                " the batch size of `prompt`."
         | 
| 337 | 
            +
                            )
         | 
| 338 | 
             
                        else:
         | 
| 339 | 
             
                            uncond_tokens = negative_prompt
         | 
| 340 |  | 
|  | |
| 347 | 
             
                            return_tensors="pt",
         | 
| 348 | 
             
                        )
         | 
| 349 |  | 
| 350 | 
            +
                        if (
         | 
| 351 | 
            +
                            hasattr(self.text_encoder.config, "use_attention_mask")
         | 
| 352 | 
            +
                            and self.text_encoder.config.use_attention_mask
         | 
| 353 | 
            +
                        ):
         | 
| 354 | 
             
                            attention_mask = uncond_input.attention_mask.to(device)
         | 
| 355 | 
             
                        else:
         | 
| 356 | 
             
                            attention_mask = None
         | 
|  | |
| 364 | 
             
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         | 
| 365 | 
             
                        seq_len = negative_prompt_embeds.shape[1]
         | 
| 366 |  | 
| 367 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.to(
         | 
| 368 | 
            +
                            dtype=self.text_encoder.dtype, device=device
         | 
| 369 | 
            +
                        )
         | 
| 370 |  | 
| 371 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(
         | 
| 372 | 
            +
                            1, num_images_per_prompt, 1
         | 
| 373 | 
            +
                        )
         | 
| 374 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(
         | 
| 375 | 
            +
                            batch_size * num_images_per_prompt, seq_len, -1
         | 
| 376 | 
            +
                        )
         | 
| 377 |  | 
| 378 | 
             
                        # For classifier free guidance, we need to do two forward passes.
         | 
| 379 | 
             
                        # Here we concatenate the unconditional and text embeddings into a single batch
         | 
|  | |
| 396 | 
             
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 397 | 
             
                    # and should be between [0, 1]
         | 
| 398 |  | 
| 399 | 
            +
                    accepts_eta = "eta" in set(
         | 
| 400 | 
            +
                        inspect.signature(self.scheduler.step).parameters.keys()
         | 
| 401 | 
            +
                    )
         | 
| 402 | 
             
                    extra_step_kwargs = {}
         | 
| 403 | 
             
                    if accepts_eta:
         | 
| 404 | 
             
                        extra_step_kwargs["eta"] = eta
         | 
| 405 |  | 
| 406 | 
             
                    # check if the scheduler accepts generator
         | 
| 407 | 
            +
                    accepts_generator = "generator" in set(
         | 
| 408 | 
            +
                        inspect.signature(self.scheduler.step).parameters.keys()
         | 
| 409 | 
            +
                    )
         | 
| 410 | 
             
                    if accepts_generator:
         | 
| 411 | 
             
                        extra_step_kwargs["generator"] = generator
         | 
| 412 | 
             
                    return extra_step_kwargs
         | 
| 413 |  | 
| 414 | 
            +
                def prepare_latents(
         | 
| 415 | 
            +
                    self,
         | 
| 416 | 
            +
                    batch_size,
         | 
| 417 | 
            +
                    num_channels_latents,
         | 
| 418 | 
            +
                    height,
         | 
| 419 | 
            +
                    width,
         | 
| 420 | 
            +
                    dtype,
         | 
| 421 | 
            +
                    device,
         | 
| 422 | 
            +
                    generator,
         | 
| 423 | 
            +
                    latents=None,
         | 
| 424 | 
            +
                ):
         | 
| 425 | 
            +
                    shape = (
         | 
| 426 | 
            +
                        batch_size,
         | 
| 427 | 
            +
                        num_channels_latents,
         | 
| 428 | 
            +
                        height // self.vae_scale_factor,
         | 
| 429 | 
            +
                        width // self.vae_scale_factor,
         | 
| 430 | 
            +
                    )
         | 
| 431 | 
             
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 432 | 
            +
                        raise ValueError(
         | 
| 433 | 
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 434 | 
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 435 | 
            +
                        )
         | 
| 436 |  | 
| 437 | 
             
                    if latents is None:
         | 
| 438 | 
            +
                        latents = randn_tensor(
         | 
| 439 | 
            +
                            shape, generator=generator, device=device, dtype=dtype
         | 
| 440 | 
            +
                        )
         | 
| 441 | 
             
                    else:
         | 
| 442 | 
             
                        latents = latents.to(device)
         | 
| 443 |  | 
|  | |
| 461 | 
             
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         | 
| 462 | 
             
                    callback_steps: int = 1,
         | 
| 463 | 
             
                    batch_size: int = 4,
         | 
| 464 | 
            +
                    device=torch.device("cuda:0"),
         | 
| 465 | 
             
                ):
         | 
| 466 | 
             
                    self.unet = self.unet.to(device=device)
         | 
| 467 | 
             
                    self.vae = self.vae.to(device=device)
         | 
| 468 |  | 
| 469 | 
             
                    self.text_encoder = self.text_encoder.to(device=device)
         | 
| 470 |  | 
|  | |
| 471 | 
             
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 472 | 
             
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 473 | 
             
                    # corresponds to doing no classifier free guidance.
         | 
|  | |
| 483 | 
             
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 484 | 
             
                        do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 485 | 
             
                        negative_prompt=negative_prompt,
         | 
| 486 | 
            +
                    )  # type: ignore
         | 
| 487 | 
             
                    prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
         | 
| 488 |  | 
| 489 | 
             
                    # Prepare latent variables
         | 
|  | |
| 497 | 
             
                        generator,
         | 
| 498 | 
             
                        None,
         | 
| 499 | 
             
                    )
         | 
| 500 | 
            +
             | 
| 501 | 
             
                    camera = get_camera(batch_size).to(dtype=latents.dtype, device=device)
         | 
| 502 |  | 
| 503 | 
             
                    # Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
|  | |
| 510 | 
             
                            # expand the latents if we are doing classifier free guidance
         | 
| 511 | 
             
                            multiplier = 2 if do_classifier_free_guidance else 1
         | 
| 512 | 
             
                            latent_model_input = torch.cat([latents] * multiplier)
         | 
| 513 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(
         | 
| 514 | 
            +
                                latent_model_input, t
         | 
| 515 | 
            +
                            )
         | 
| 516 |  | 
| 517 | 
             
                            # predict the noise residual
         | 
| 518 | 
             
                            noise_pred = self.unet.forward(
         | 
| 519 | 
             
                                x=latent_model_input,
         | 
| 520 | 
            +
                                timesteps=torch.tensor(
         | 
| 521 | 
            +
                                    [t] * 4 * multiplier,
         | 
| 522 | 
            +
                                    dtype=latent_model_input.dtype,
         | 
| 523 | 
            +
                                    device=device,
         | 
| 524 | 
            +
                                ),
         | 
| 525 | 
            +
                                context=torch.cat(
         | 
| 526 | 
            +
                                    [prompt_embeds_neg] * 4 + [prompt_embeds_pos] * 4
         | 
| 527 | 
            +
                                ),
         | 
| 528 | 
             
                                num_frames=4,
         | 
| 529 | 
             
                                camera=torch.cat([camera] * multiplier),
         | 
| 530 | 
             
                            )
         | 
|  | |
| 532 | 
             
                            # perform guidance
         | 
| 533 | 
             
                            if do_classifier_free_guidance:
         | 
| 534 | 
             
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 535 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (
         | 
| 536 | 
            +
                                    noise_pred_text - noise_pred_uncond
         | 
| 537 | 
            +
                                )
         | 
| 538 |  | 
| 539 | 
             
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 540 | 
             
                            # latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype)
         | 
| 541 | 
            +
                            latents: torch.Tensor = self.scheduler.step(
         | 
| 542 | 
            +
                                noise_pred, t, latents, **extra_step_kwargs, return_dict=False
         | 
| 543 | 
            +
                            )[0]
         | 
| 544 |  | 
| 545 | 
             
                            # call the callback, if provided
         | 
| 546 | 
            +
                            if i == len(timesteps) - 1 or (
         | 
| 547 | 
            +
                                (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
         | 
| 548 | 
            +
                            ):
         | 
| 549 | 
             
                                progress_bar.update()
         | 
| 550 | 
             
                                if callback is not None and i % callback_steps == 0:
         | 
| 551 | 
            +
                                    callback(i, t, latents)  # type: ignore
         | 
| 552 |  | 
| 553 | 
             
                    # Post-processing
         | 
| 554 | 
             
                    if output_type == "latent":
         | 
    	
        mvdream/util.py
    CHANGED
    
    | @@ -12,6 +12,7 @@ import torch | |
| 12 | 
             
            import torch.nn as nn
         | 
| 13 | 
             
            from einops import repeat
         | 
| 14 |  | 
|  | |
| 15 | 
             
            def checkpoint(func, inputs, params, flag):
         | 
| 16 | 
             
                """
         | 
| 17 | 
             
                Evaluate a function without caching intermediate activations, allowing for
         | 
| @@ -30,7 +31,6 @@ def checkpoint(func, inputs, params, flag): | |
| 30 |  | 
| 31 |  | 
| 32 | 
             
            class CheckpointFunction(torch.autograd.Function):
         | 
| 33 | 
            -
             | 
| 34 | 
             
                @staticmethod
         | 
| 35 | 
             
                def forward(ctx, run_function, length, *args):
         | 
| 36 | 
             
                    ctx.run_function = run_function
         | 
| @@ -43,9 +43,7 @@ class CheckpointFunction(torch.autograd.Function): | |
| 43 |  | 
| 44 | 
             
                @staticmethod
         | 
| 45 | 
             
                def backward(ctx, *output_grads):
         | 
| 46 | 
            -
                    ctx.input_tensors = [
         | 
| 47 | 
            -
                        x.detach().requires_grad_(True) for x in ctx.input_tensors
         | 
| 48 | 
            -
                    ]
         | 
| 49 | 
             
                    with torch.enable_grad():
         | 
| 50 | 
             
                        # Fixes a bug where the first op in run_function modifies the
         | 
| 51 | 
             
                        # Tensor storage in place, which is not allowed for detach()'d
         | 
| @@ -76,16 +74,18 @@ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
| 76 | 
             
                if not repeat_only:
         | 
| 77 | 
             
                    half = dim // 2
         | 
| 78 | 
             
                    freqs = torch.exp(
         | 
| 79 | 
            -
                        -math.log(max_period) | 
| 80 | 
            -
                        torch.arange(start=0, end=half, dtype=torch.float32) | 
| 81 | 
            -
                        half | 
|  | |
| 82 | 
             
                    args = timesteps[:, None] * freqs[None]
         | 
| 83 | 
             
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         | 
| 84 | 
             
                    if dim % 2:
         | 
| 85 | 
             
                        embedding = torch.cat(
         | 
| 86 | 
            -
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | 
|  | |
| 87 | 
             
                else:
         | 
| 88 | 
            -
                    embedding = repeat(timesteps,  | 
| 89 | 
             
                # import pdb; pdb.set_trace()
         | 
| 90 | 
             
                return embedding
         | 
| 91 |  | 
| @@ -98,6 +98,7 @@ def zero_module(module): | |
| 98 | 
             
                    p.detach().zero_()
         | 
| 99 | 
             
                return module
         | 
| 100 |  | 
|  | |
| 101 | 
             
            def conv_nd(dims, *args, **kwargs):
         | 
| 102 | 
             
                """
         | 
| 103 | 
             
                Create a 1D, 2D, or 3D convolution module.
         | 
|  | |
| 12 | 
             
            import torch.nn as nn
         | 
| 13 | 
             
            from einops import repeat
         | 
| 14 |  | 
| 15 | 
            +
             | 
| 16 | 
             
            def checkpoint(func, inputs, params, flag):
         | 
| 17 | 
             
                """
         | 
| 18 | 
             
                Evaluate a function without caching intermediate activations, allowing for
         | 
|  | |
| 31 |  | 
| 32 |  | 
| 33 | 
             
            class CheckpointFunction(torch.autograd.Function):
         | 
|  | |
| 34 | 
             
                @staticmethod
         | 
| 35 | 
             
                def forward(ctx, run_function, length, *args):
         | 
| 36 | 
             
                    ctx.run_function = run_function
         | 
|  | |
| 43 |  | 
| 44 | 
             
                @staticmethod
         | 
| 45 | 
             
                def backward(ctx, *output_grads):
         | 
| 46 | 
            +
                    ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
         | 
|  | |
|  | |
| 47 | 
             
                    with torch.enable_grad():
         | 
| 48 | 
             
                        # Fixes a bug where the first op in run_function modifies the
         | 
| 49 | 
             
                        # Tensor storage in place, which is not allowed for detach()'d
         | 
|  | |
| 74 | 
             
                if not repeat_only:
         | 
| 75 | 
             
                    half = dim // 2
         | 
| 76 | 
             
                    freqs = torch.exp(
         | 
| 77 | 
            +
                        -math.log(max_period)
         | 
| 78 | 
            +
                        * torch.arange(start=0, end=half, dtype=torch.float32)
         | 
| 79 | 
            +
                        / half
         | 
| 80 | 
            +
                    ).to(device=timesteps.device)
         | 
| 81 | 
             
                    args = timesteps[:, None] * freqs[None]
         | 
| 82 | 
             
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         | 
| 83 | 
             
                    if dim % 2:
         | 
| 84 | 
             
                        embedding = torch.cat(
         | 
| 85 | 
            +
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
         | 
| 86 | 
            +
                        )
         | 
| 87 | 
             
                else:
         | 
| 88 | 
            +
                    embedding = repeat(timesteps, "b -> b d", d=dim)
         | 
| 89 | 
             
                # import pdb; pdb.set_trace()
         | 
| 90 | 
             
                return embedding
         | 
| 91 |  | 
|  | |
| 98 | 
             
                    p.detach().zero_()
         | 
| 99 | 
             
                return module
         | 
| 100 |  | 
| 101 | 
            +
             | 
| 102 | 
             
            def conv_nd(dims, *args, **kwargs):
         | 
| 103 | 
             
                """
         | 
| 104 | 
             
                Create a 1D, 2D, or 3D convolution module.
         | 
