YummyYum commited on
Commit
13a2e36
·
verified ·
1 Parent(s): a3ff110

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +25 -1
  2. LICENSE +27 -0
  3. README.md +254 -0
  4. THIRD_PARTY_NOTICES.md +47 -0
  5. config.json +69 -0
  6. configuration.json +1 -0
  7. configuration_deepseek.py +212 -0
  8. generation_config.json +4 -0
  9. model-1-of-61.safetensors +3 -0
  10. model-10-of-61.safetensors +3 -0
  11. model-11-of-61.safetensors +3 -0
  12. model-12-of-61.safetensors +3 -0
  13. model-13-of-61.safetensors +3 -0
  14. model-14-of-61.safetensors +3 -0
  15. model-15-of-61.safetensors +3 -0
  16. model-16-of-61.safetensors +3 -0
  17. model-17-of-61.safetensors +3 -0
  18. model-18-of-61.safetensors +3 -0
  19. model-19-of-61.safetensors +3 -0
  20. model-2-of-61.safetensors +3 -0
  21. model-20-of-61.safetensors +3 -0
  22. model-21-of-61.safetensors +3 -0
  23. model-22-of-61.safetensors +3 -0
  24. model-23-of-61.safetensors +3 -0
  25. model-24-of-61.safetensors +3 -0
  26. model-25-of-61.safetensors +3 -0
  27. model-26-of-61.safetensors +3 -0
  28. model-27-of-61.safetensors +3 -0
  29. model-28-of-61.safetensors +3 -0
  30. model-29-of-61.safetensors +3 -0
  31. model-3-of-61.safetensors +3 -0
  32. model-30-of-61.safetensors +3 -0
  33. model-31-of-61.safetensors +3 -0
  34. model-32-of-61.safetensors +3 -0
  35. model-33-of-61.safetensors +3 -0
  36. model-34-of-61.safetensors +3 -0
  37. model-35-of-61.safetensors +3 -0
  38. model-36-of-61.safetensors +3 -0
  39. model-37-of-61.safetensors +3 -0
  40. model-38-of-61.safetensors +3 -0
  41. model-39-of-61.safetensors +3 -0
  42. model-4-of-61.safetensors +3 -0
  43. model-40-of-61.safetensors +3 -0
  44. model-41-of-61.safetensors +3 -0
  45. model-42-of-61.safetensors +3 -0
  46. model-43-of-61.safetensors +3 -0
  47. model-44-of-61.safetensors +3 -0
  48. model-45-of-61.safetensors +3 -0
  49. model-46-of-61.safetensors +3 -0
  50. model-47-of-61.safetensors +3 -0
.gitattributes CHANGED
@@ -8,6 +8,7 @@
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
 
11
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
@@ -25,11 +26,34 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
  *.model filter=lfs diff=lfs merge=lfs -text
14
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
26
  *.safetensors filter=lfs diff=lfs merge=lfs -text
27
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *.jsonl filter=lfs diff=lfs merge=lfs -text
36
  *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # JSON files - uncompressed
53
+ *.json filter=lfs diff=lfs merge=lfs -text
54
+ *.log
55
+ # Image files - compressed
56
+ *.jpg filter=lfs diff=lfs merge=lfs -text
57
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
58
+ *.webp filter=lfs diff=lfs merge=lfs -text
59
+ *.gguf filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Modified MIT License
2
+
3
+ Copyright (c) 2025 Moonshot AI
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the “Software”), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
22
+
23
+ Our only modification part is that, if the Software (or any derivative works
24
+ thereof) is used for any of your commercial products or services that have
25
+ more than 100 million monthly active users, or more than 20 million US dollars
26
+ (or equivalent in other currencies) in monthly revenue, you shall prominently
27
+ display "Kimi K2" on the user interface of such product or service.
README.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Introduction
2
+
3
+ **FlagOS** is a unified heterogeneous computing software stack for large models, co-developed with leading global chip manufacturers. With core technologies such as the **FlagScale** distributed training/inference framework, **FlagGems** universal operator library, **FlagCX** communication library, and **FlagTree** unified compiler, the **FlagRelease** platform leverages the FlagOS stack to automatically produce and release various combinations of <chip + open-source model>. This enables efficient and automated model migration across diverse chips, opening a new chapter for large model deployment and application.
4
+
5
+ Based on this, the **Kimi-K2-Instruct-FlagOS** model is adapted for the Nvidia chip using the FlagOS software stack, enabling:
6
+
7
+ ### Integrated Deployment
8
+
9
+ - Deep integration with the open-source [FlagScale framework](https://github.com/FlagOpen/FlagScale)
10
+ - Out-of-the-box inference scripts with pre-configured hardware and software parameters
11
+ - Released **FlagOS**-A800 container image supporting deployment within minutes
12
+
13
+ ### Consistency Validation
14
+
15
+ - Rigorously evaluated through benchmark testing: Performance and results from the FlagOS software stack are compared against native stacks on multiple public.
16
+
17
+ # Technical Overview
18
+
19
+ ## **FlagScale Distributed Training and Inference Framework**
20
+
21
+ FlagScale is an end-to-end framework for large models across heterogeneous computing resources, maximizing computational efficiency and ensuring model validity through core technologies. Its key advantages include:
22
+
23
+ - **Unified Deployment Interface:** Standardized command-line tools support one-click service deployment across multiple hardware platforms, significantly reducing adaptation costs in heterogeneous environments.
24
+ - **Intelligent Parallel Optimization:** Automatically generates optimal distributed parallel strategies based on chip computing characteristics, achieving dynamic load balancing of computation/communication resources.
25
+ - **Seamless Operator Switching:** Deep integration with the FlagGems operator library allows high-performance operators to be invoked via environment variables without modifying model code.
26
+
27
+ ## **FlagGems Universal Large-Model Operator Library**
28
+
29
+ FlagGems is a Triton-based, cross-architecture operator library collaboratively developed with industry partners. Its core strengths include:
30
+
31
+ - **Full-stack Coverage**: Over 100 operators, with a broader range of operator types than competing libraries.
32
+ - **Ecosystem Compatibility**: Supports 7 accelerator backends. Ongoing optimizations have significantly improved performance.
33
+ - **High Efficiency**: Employs unique code generation and runtime optimization techniques for faster secondary development and better runtime performance compared to alternatives.
34
+
35
+ ## **FlagEval Evaluation Framework**
36
+
37
+ FlagEval (Libra)** is a comprehensive evaluation system and open platform for large models launched in 2023. It aims to establish scientific, fair, and open benchmarks, methodologies, and tools to help researchers assess model and training algorithm performance. It features:
38
+
39
+ - **Multi-dimensional Evaluation**: Supports 800+ model evaluations across NLP, CV, Audio, and Multimodal fields, covering 20+ downstream tasks including language understanding and image-text generation.
40
+ - **Industry-Grade Use Cases**: Has completed horizontal evaluations of mainstream large models, providing authoritative benchmarks for chip-model performance validation.
41
+
42
+ # Evaluation Results
43
+
44
+ ## Benchmark Result
45
+
46
+ | Metrics | Kimi-K2-Instruct-FlagOS-H100-CUDA | Kimi-K2-Instruct-FlagOS-FlagOS-Nvidia |
47
+ | --------- | -------------------------------- | ------------------------------------ |
48
+ | AIME | 0.667 | 0.700 |
49
+ | LiveBench | 0.685 | 0.690 |
50
+ | MMLU | 0.773 | 0.788 |
51
+ | MUSR | 0.724 | 0.710 |
52
+
53
+ # User Guide
54
+
55
+ ## General Information
56
+
57
+ **Environment Setup**
58
+
59
+ | System Component | Version Information |
60
+ | ------------------------------- | ------------------------------------ |
61
+ | Docker Version | Docker version 24.0.0, build 98fdcd7 |
62
+ | Operating System | Description: Ubuntu 20.04 LTS |
63
+ | FlagScale | Version: 0.8.0 |
64
+ | FlagGems | Version: 2.2 |
65
+
66
+ ## Operation Steps【***need two machines***】
67
+
68
+ ### Download Open-source Model Weights
69
+
70
+ **Execution under shared storage on master node IP**
71
+
72
+ ```python
73
+ pip install modelscope
74
+ modelscope download --model moonshotai/Kimi-K2-Instruct --local_dir /share/models/Kimi-K2-Instruct
75
+ ```
76
+
77
+ ### Download FlagOS Image
78
+
79
+ **Dual-machine execution**
80
+
81
+ ```python
82
+ docker pull harbor.baai.ac.cn/flagrelease-public/flagrelease_nvidia_kimi_k2
83
+ ```
84
+
85
+ ### Start the inference service
86
+
87
+ **Dual-machine execution**
88
+
89
+ ```
90
+ #Container Startup
91
+ docker run --rm --init --detach \
92
+ --net=host --uts=host --ipc=host \
93
+ --security-opt=seccomp=unconfined \
94
+ --privileged=true \
95
+ --ulimit stack=67108864 \
96
+ --ulimit memlock=-1 \
97
+ --ulimit nofile=1048576:1048576 \
98
+ --shm-size=32G \
99
+ -v /share/models:/models \
100
+ --gpus all \
101
+ --name flagos \
102
+ harbor.baai.ac.cn/flagrelease-public/flagrelease_nvidia_kimi_k2 \
103
+ sleep infinity
104
+
105
+ docker exec -it flagos bash
106
+ ```
107
+
108
+ ### **Modify configuration files**
109
+
110
+ **Dual-machine execution**---**Edit the `hostfile.txt` file**
111
+
112
+ Change the IP in hostfile.txt to the corresponding machine's IP
113
+
114
+ ```python
115
+ vim /root/miniconda3/envs/flagscale-inference/lib/python3.12/site-packages/flag_scale/examples/kimik2/conf/hostfile.txt
116
+ # ip slots type=xxx[optional]
117
+ # master node
118
+ x.x.x.x slots=8 type=gpu
119
+ # worker nodes
120
+ x.x.x.x slots=8 type=gpu
121
+ ```
122
+
123
+ **Dual-machine execution**---**Modify the `serve.yaml` file**
124
+
125
+ ```python
126
+ vim /root/miniconda3/envs/flagscale-inference/lib/python3.12/site-packages/flag_scale/examples/kimik2/conf/serve.yaml
127
+ ```
128
+
129
+ Modify
130
+ ```
131
+ hostfile: examples/kimik2/conf/hostfile.txt
132
+ ```
133
+ to
134
+ ```
135
+ hostfile: /root/miniconda3/envs/flagscale-inference/lib/python3.12/site-packages/flag_scale/examples/kimik2/conf/hostfile.txt
136
+ ```
137
+
138
+ Modify
139
+ ```
140
+ USE_FLAGGEMS: false
141
+ ```
142
+ to
143
+ ```
144
+ USE_FLAGGEMS: true
145
+ ```
146
+
147
+ ### **Enter the `flagscale-inference` environment**
148
+
149
+ **Execution on master node IP**
150
+
151
+ ```python
152
+ conda activate flagscale-inference
153
+ cd /repos/FlagScale
154
+ pip install . -i https://pypi.tuna.tsinghua.edu.cn/simple --no-build-isolation
155
+ ```
156
+
157
+ ### **Set up passwordless access from the master container to worker host machines**
158
+
159
+ ```python
160
+ Write the contents of the ~/.ssh/id_rsa.pub file from the flagos container on the master node into the ~/.ssh/authorized_keys file on the worker nodes' physical machines.
161
+ ```
162
+
163
+ ### Serve
164
+
165
+ **Execution on Master Node IP**
166
+
167
+ ```python
168
+ flagscale serve kimik2
169
+
170
+ #After the service starts, you will see output similar to the following:
171
+ #INFO 07-08 09:49:51 [api_server.py:1349] Starting vLLM API server 0 on http://0.0.0.0:30000
172
+
173
+ ```
174
+
175
+ # Service Invocation
176
+
177
+ ## API-based Invocation Script
178
+
179
+ ```
180
+ import openai
181
+ openai.api_key = "EMPTY"
182
+ openai.base_url = "http://<server_ip>:30000/v1/"
183
+ model = "Kimi-K2-Instruct-nvidia-origin"
184
+ messages = [
185
+ {"role": "system", "content": "You are a helpful assistant."},
186
+ {"role": "user", "content": "What's the weather like today?"}
187
+ ]
188
+ response = openai.chat.completions.create(
189
+ model=model,
190
+ messages=messages,
191
+ stream=False,
192
+ )
193
+ for item in response:
194
+ print(item)
195
+ ```
196
+
197
+ ## AnythingLLM Integration Guide
198
+
199
+ #### 1. Download & Install
200
+
201
+ - Visit the official site: https://anythingllm.com/
202
+ - Choose the appropriate version for your OS (Windows/macOS/Linux)
203
+ - Follow the installation wizard to complete the setup
204
+
205
+ #### 2. Configuration
206
+
207
+ - Launch AnythingLLM
208
+ - Open settings (bottom left, fourth tab)
209
+ - Configure core LLM parameters
210
+ - Click "Save Settings" to apply changes
211
+
212
+ #### 3. Model Interaction
213
+
214
+ - After model loading is complete:
215
+ - Click **"New Conversation"**
216
+ - Enter your question (e.g., “Explain the basics of quantum computing”)
217
+ - Click the send button to get a response
218
+
219
+ # Frequently Asked Questions
220
+
221
+ ### Q1: What should I do if the model fails to load?
222
+
223
+ - Check if the model weight path is correct.
224
+ - Ensure the model files are present in the `/models` directory inside the container.
225
+ - Check the container logs: `docker logs flagos`.
226
+
227
+ ### Q2: API call returns a timeout error. What should I do?
228
+
229
+ - Verify that the server IP address is correct.
230
+ - Check the firewall settings to ensure port 9010 is open.
231
+ - Confirm that the service is running properly: `docker exec flagos ps aux | grep flagscale`.
232
+
233
+ ### Q3: When installing vLLM, if you encounter errors. What should I do?
234
+
235
+ - You need to retry a few times.
236
+ - Confirm reachability to GitHub.com and associated endpoints.
237
+ - Validate network bandwidth (50MB/s or higher recommended for reliable operation).
238
+
239
+ # Contributing
240
+
241
+ We warmly welcome global developers to join us:
242
+
243
+ 1. Submit Issues to report problems
244
+ 2. Create Pull Requests to contribute code
245
+ 3. Improve technical documentation
246
+ 4. Expand hardware adaptation support
247
+
248
+ # Contact Us
249
+
250
+ ![image](image_.jpeg)
251
+
252
+ # License
253
+
254
+ The weights of this model are based on moonshotai/Kimi-K2-Instruct and are open-sourced under the Apache 2.0 License: https://www.apache.org/licenses/LICENSE-2.0.txt.
THIRD_PARTY_NOTICES.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # THIRD_PARTY_NOTICES
2
+
3
+ This file lists third-party software contained in Kimi-K2 along with their licenses, in compliance with the redistribution clauses of those licenses.
4
+
5
+ ---
6
+
7
+ ## 1. DeepSeek-V3
8
+
9
+ Our model archietecture is DeepSeek-V3-like. Some of modeling codes are copied from the source repository.
10
+
11
+ - **Source Repository**
12
+ https://huggingface.co/deepseek-ai/DeepSeek-V3
13
+
14
+ - **Files / Directories Used**
15
+ - configuation_deepseek.py
16
+ - modeling_deepseek.py
17
+
18
+ - **License Type**
19
+ MIT License
20
+
21
+ - **Copyright Notice**
22
+ Copyright (c) 2023 DeepSeek
23
+
24
+ - **Full License Text**
25
+ ```
26
+ MIT License
27
+
28
+ Copyright (c) 2023 DeepSeek
29
+
30
+ Permission is hereby granted, free of charge, to any person obtaining a copy
31
+ of this software and associated documentation files (the "Software"), to deal
32
+ in the Software without restriction, including without limitation the rights
33
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
34
+ copies of the Software, and to permit persons to whom the Software is
35
+ furnished to do so, subject to the following conditions:
36
+
37
+ The above copyright notice and this permission notice shall be included in all
38
+ copies or substantial portions of the Software.
39
+
40
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
41
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
42
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
43
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
44
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
45
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
46
+ SOFTWARE.
47
+ ```
config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeepseekV3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_deepseek.DeepseekV3Config",
9
+ "AutoModel": "modeling_deepseek.DeepseekV3Model",
10
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
11
+ },
12
+ "aux_loss_alpha": 0.001,
13
+ "bos_token_id": 163584,
14
+ "eos_token_id": 163585,
15
+ "first_k_dense_replace": 1,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 7168,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 18432,
20
+ "kv_lora_rank": 512,
21
+ "max_position_embeddings": 131072,
22
+ "model_type": "kimi_k2",
23
+ "moe_intermediate_size": 2048,
24
+ "moe_layer_freq": 1,
25
+ "n_group": 1,
26
+ "n_routed_experts": 384,
27
+ "n_shared_experts": 1,
28
+ "norm_topk_prob": true,
29
+ "num_attention_heads": 64,
30
+ "num_experts_per_tok": 8,
31
+ "num_hidden_layers": 61,
32
+ "num_key_value_heads": 64,
33
+ "num_nextn_predict_layers": 0,
34
+ "pretraining_tp": 1,
35
+ "q_lora_rank": 1536,
36
+ "qk_nope_head_dim": 128,
37
+ "qk_rope_head_dim": 64,
38
+ "quantization_config": {
39
+ "activation_scheme": "dynamic",
40
+ "fmt": "e4m3",
41
+ "quant_method": "fp8",
42
+ "weight_block_size": [
43
+ 128,
44
+ 128
45
+ ]
46
+ },
47
+ "rms_norm_eps": 1e-06,
48
+ "rope_theta": 50000.0,
49
+ "routed_scaling_factor": 2.827,
50
+ "rope_scaling": {
51
+ "beta_fast": 1.0,
52
+ "beta_slow": 1.0,
53
+ "factor": 32.0,
54
+ "mscale": 1.0,
55
+ "mscale_all_dim": 1.0,
56
+ "original_max_position_embeddings": 4096,
57
+ "type": "yarn"
58
+ },
59
+ "scoring_func": "sigmoid",
60
+ "seq_aux": true,
61
+ "tie_word_embeddings": false,
62
+ "topk_group": 1,
63
+ "topk_method": "noaux_tc",
64
+ "torch_dtype": "bfloat16",
65
+ "transformers_version": "4.48.3",
66
+ "use_cache": true,
67
+ "v_head_dim": 128,
68
+ "vocab_size": 163840
69
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"text-generation"}
configuration_deepseek.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copy from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/configuration_deepseek.py
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
9
+ class DeepseekV3Config(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
12
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
13
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
14
+
15
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
16
+ documentation from [`PretrainedConfig`] for more information.
17
+
18
+
19
+ Args:
20
+ vocab_size (`int`, *optional*, defaults to 129280):
21
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
22
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
23
+ hidden_size (`int`, *optional*, defaults to 4096):
24
+ Dimension of the hidden representations.
25
+ intermediate_size (`int`, *optional*, defaults to 11008):
26
+ Dimension of the MLP representations.
27
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
28
+ Dimension of the MoE representations.
29
+ num_hidden_layers (`int`, *optional*, defaults to 32):
30
+ Number of hidden layers in the Transformer decoder.
31
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
32
+ Number of nextn predict layers in the DeepSeekV3 Model.
33
+ num_attention_heads (`int`, *optional*, defaults to 32):
34
+ Number of attention heads for each attention layer in the Transformer decoder.
35
+ n_shared_experts (`int`, *optional*, defaults to None):
36
+ Number of shared experts, None means dense model.
37
+ n_routed_experts (`int`, *optional*, defaults to None):
38
+ Number of routed experts, None means dense model.
39
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
40
+ Scaling factor or routed experts.
41
+ topk_method (`str`, *optional*, defaults to `gready`):
42
+ Topk method used in routed gate.
43
+ n_group (`int`, *optional*, defaults to None):
44
+ Number of groups for routed experts.
45
+ topk_group (`int`, *optional*, defaults to None):
46
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
47
+ num_experts_per_tok (`int`, *optional*, defaults to None):
48
+ Number of selected experts, None means dense model.
49
+ moe_layer_freq (`int`, *optional*, defaults to 1):
50
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
51
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
52
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
53
+ \--k dense layers--/
54
+ norm_topk_prob (`bool`, *optional*, defaults to False):
55
+ Whether to normalize the weights of the routed experts.
56
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
57
+ Method of computing expert weights.
58
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
59
+ Auxiliary loss weight coefficient.
60
+ seq_aux = (`bool`, *optional*, defaults to True):
61
+ Whether to compute the auxiliary loss for each individual sample.
62
+ num_key_value_heads (`int`, *optional*):
63
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
64
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
65
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
66
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
67
+ by meanpooling all the original heads within that group. For more details checkout [this
68
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
69
+ `num_attention_heads`.
70
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
71
+ The non-linear activation function (function or string) in the decoder.
72
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
73
+ The maximum sequence length that this model might ever be used with.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
77
+ The epsilon used by the rms normalization layers.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`.
81
+ pad_token_id (`int`, *optional*):
82
+ Padding token id.
83
+ bos_token_id (`int`, *optional*, defaults to 1):
84
+ Beginning of stream token id.
85
+ eos_token_id (`int`, *optional*, defaults to 2):
86
+ End of stream token id.
87
+ pretraining_tp (`int`, *optional*, defaults to 1):
88
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
89
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
90
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
91
+ issue](https://github.com/pytorch/pytorch/issues/76232).
92
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
93
+ Whether to tie weight embeddings
94
+ rope_theta (`float`, *optional*, defaults to 10000.0):
95
+ The base period of the RoPE embeddings.
96
+ rope_scaling (`Dict`, *optional*):
97
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
98
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
99
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
100
+ `max_position_embeddings` to the expected new maximum.
101
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
102
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
103
+ attention_dropout (`float`, *optional*, defaults to 0.0):
104
+ The dropout ratio for the attention probabilities.
105
+
106
+ ```python
107
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
108
+
109
+ >>> # Initializing a Deepseek-V3 style configuration
110
+ >>> configuration = DeepseekV3Config()
111
+
112
+ >>> # Accessing the model configuration
113
+ >>> configuration = model.config
114
+ ```"""
115
+
116
+ model_type = "deepseek_v3"
117
+ keys_to_ignore_at_inference = ["past_key_values"]
118
+
119
+ def __init__(
120
+ self,
121
+ vocab_size=129280,
122
+ hidden_size=7168,
123
+ intermediate_size=18432,
124
+ moe_intermediate_size = 2048,
125
+ num_hidden_layers=61,
126
+ num_nextn_predict_layers=1,
127
+ num_attention_heads=128,
128
+ num_key_value_heads=128,
129
+ n_shared_experts = 1,
130
+ n_routed_experts = 256,
131
+ ep_size = 1,
132
+ routed_scaling_factor = 2.5,
133
+ kv_lora_rank = 512,
134
+ q_lora_rank = 1536,
135
+ qk_rope_head_dim = 64,
136
+ v_head_dim = 128,
137
+ qk_nope_head_dim = 128,
138
+ topk_method = 'noaux_tc',
139
+ n_group = 8,
140
+ topk_group = 4,
141
+ num_experts_per_tok = 8,
142
+ moe_layer_freq = 1,
143
+ first_k_dense_replace = 3,
144
+ norm_topk_prob = True,
145
+ scoring_func = 'sigmoid',
146
+ aux_loss_alpha = 0.001,
147
+ seq_aux = True,
148
+ hidden_act="silu",
149
+ max_position_embeddings=4096,
150
+ initializer_range=0.02,
151
+ rms_norm_eps=1e-6,
152
+ use_cache=True,
153
+ pad_token_id=None,
154
+ bos_token_id=0,
155
+ eos_token_id=1,
156
+ pretraining_tp=1,
157
+ tie_word_embeddings=False,
158
+ rope_theta=10000.0,
159
+ rope_scaling=None,
160
+ attention_bias=False,
161
+ attention_dropout=0.0,
162
+ **kwargs,
163
+ ):
164
+ self.vocab_size = vocab_size
165
+ self.max_position_embeddings = max_position_embeddings
166
+ self.hidden_size = hidden_size
167
+ self.intermediate_size = intermediate_size
168
+ self.moe_intermediate_size = moe_intermediate_size
169
+ self.num_hidden_layers = num_hidden_layers
170
+ self.num_nextn_predict_layers = num_nextn_predict_layers
171
+ self.num_attention_heads = num_attention_heads
172
+ self.n_shared_experts = n_shared_experts
173
+ self.n_routed_experts = n_routed_experts
174
+ self.ep_size = ep_size
175
+ self.routed_scaling_factor = routed_scaling_factor
176
+ self.kv_lora_rank = kv_lora_rank
177
+ self.q_lora_rank = q_lora_rank
178
+ self.qk_rope_head_dim = qk_rope_head_dim
179
+ self.v_head_dim = v_head_dim
180
+ self.qk_nope_head_dim = qk_nope_head_dim
181
+ self.topk_method = topk_method
182
+ self.n_group = n_group
183
+ self.topk_group = topk_group
184
+ self.num_experts_per_tok = num_experts_per_tok
185
+ self.moe_layer_freq = moe_layer_freq
186
+ self.first_k_dense_replace = first_k_dense_replace
187
+ self.norm_topk_prob = norm_topk_prob
188
+ self.scoring_func = scoring_func
189
+ self.aux_loss_alpha = aux_loss_alpha
190
+ self.seq_aux = seq_aux
191
+ # for backward compatibility
192
+ if num_key_value_heads is None:
193
+ num_key_value_heads = num_attention_heads
194
+
195
+ self.num_key_value_heads = num_key_value_heads
196
+ self.hidden_act = hidden_act
197
+ self.initializer_range = initializer_range
198
+ self.rms_norm_eps = rms_norm_eps
199
+ self.pretraining_tp = pretraining_tp
200
+ self.use_cache = use_cache
201
+ self.rope_theta = rope_theta
202
+ self.rope_scaling = rope_scaling
203
+ self.attention_bias = attention_bias
204
+ self.attention_dropout = attention_dropout
205
+
206
+ super().__init__(
207
+ pad_token_id=pad_token_id,
208
+ bos_token_id=bos_token_id,
209
+ eos_token_id=eos_token_id,
210
+ tie_word_embeddings=tie_word_embeddings,
211
+ **kwargs,
212
+ )
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_length": 131072,
3
+ "eos_token_id": 163586
4
+ }
model-1-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23b76842b591c068bc0ad42b3c4aafdc9f4e9a8945b5c0e56a21856078730928
3
+ size 2846451040
model-10-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06eb7cfc383aa668993737ca4a5fa8ebf8ed4272045ef8cdc183baccb4f060ee
3
+ size 17066593104
model-11-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:795003a6b3669ea1f306123e393181938a10f162388582cd9713db0a16394cea
3
+ size 17066595432
model-12-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10fb0d195b1658d238e0122b328b8e1653bf7c7e80ca4b6525505abd3d648c0d
3
+ size 17066595432
model-13-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e33f1dc9d890f8def7016bcaeb8315b5ba415e7e1dc1a92b7b66ea180dc349cc
3
+ size 17066595432
model-14-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0991a46f6f049eb239edc393d8b064eaf2a0af90a96d0532db66e60ae09c10a4
3
+ size 17066595432
model-15-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29e9499e40e0012c25eedf449a7b37fcb64cfd43e4672b77da30c80445b212db
3
+ size 17066595432
model-16-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5c88baa1759a9f470e9d799b041d383c2ba8ad22b66e81da44d9d302ccedd96
3
+ size 17066595432
model-17-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f484719825079b018a1e6ccd70d056c8dacf036180461dc7f3037dc6de14ca8
3
+ size 17066595432
model-18-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c41a10770609efd56cd6fcc8c0f93d1f3822a35b952cf4ca62cfd6a199f8dd7
3
+ size 17066595432
model-19-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dec31d95a60d92c61d51a326c50309e94271e56e87448e15000fa7335a497c1
3
+ size 17066595432
model-2-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9698930567abb2e904f78eed4aa6e17c3d7c1e34c3ac73a709cc07787fd37c85
3
+ size 17066593104
model-20-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cb5b992435aa41c21a311be198c99aac6f97a33ce106ccb90459f6e4a8cd17b
3
+ size 17066595432
model-21-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aad8a72e36b3e1a9f3944e5f25eae492ef3fa6bb864a429802575ec86d1ea2bf
3
+ size 17066595432
model-22-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dd9104253a6dbf6e8366d8d9f8d6c31465fee8a938775ca6e38b046d9723608
3
+ size 17066595432
model-23-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b63bfb30d3efffe9e33afc7db8f59b4f25f524260900c3fcad426f7196e40b9
3
+ size 17066595432
model-24-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48204d7232ce5abdb7c590ded65ddadd3a36b0fcc5d175cf27827583e1165782
3
+ size 17066595432
model-25-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74efec3d52c9a80b4850f173a7ab9ddb40adc134dabf8e21dd05235c7f797347
3
+ size 17066595432
model-26-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12d6d8aa724f99aa061a64b6efa533723ee21ebb802900ce1a8b4db18fd16176
3
+ size 17066595432
model-27-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff4e9055eef6c07171fb6b5ee9750def14ca64a56ab391c42123ffd2cf4b7828
3
+ size 17066595432
model-28-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6757464954cbbf6bc8046dd62628e008de48ba3ae50f849a2187bcf873f84336
3
+ size 17066595432
model-29-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c6db8e79ecbd4b6e198f8543ac4ad4d0e0954706926c992b7f1ff7432453698
3
+ size 17066595432
model-3-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1391b1ba27e5cf04ce0b18f45bb0a3c82fbf5433ce0af87d296c1d5a1fd56a7
3
+ size 17066593104
model-30-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:918dd637c2a7590bfe113a32f93ab6a3cd9c68abdec22a6b54ca3c0b0a0dc88b
3
+ size 17066595432
model-31-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44bf952854075f1eaf159d7ae35bd58bc2aa7beab42e16bcef3613c1493273c8
3
+ size 17066595432
model-32-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5f37676bd435e24a234b4164f59b4559606d6d192f65f97c89b4c6e6838b11a
3
+ size 17066595432
model-33-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2741414690956a950e3abe49eba9c9ba61fabce57ef0ec123dd0007a9cfdd73c
3
+ size 17066595432
model-34-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce15a4c296ca738960dcadcde4796ad7c95fcdc503f5557dab1bccc8f0e4a427
3
+ size 17066595432
model-35-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e663c0fdbae60daa246e2dec50c5e892289d53f4ccae63ad977e61c78aa5b99
3
+ size 17066595432
model-36-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ab798ec5e9d98552293eb73cc429faac320caa82856b7303f4487217214d00a
3
+ size 17066595432
model-37-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97899b584b7cfc65e1adc601cb79f1b60533389ab02cf4409ed72e4ecc7a485c
3
+ size 17066595432
model-38-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5707040ecd0aad270628ee21f57b87adecd76fbe82d95a9ddfe536d0b4628e47
3
+ size 17066595432
model-39-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6207e2ba874f7aecc77850cf21d747201514b626ed76f3b65064f3fd4b9cf574
3
+ size 17066595432
model-4-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5226ae5591c4fba1bb42960e197b645d7bbb5fb5e8386c62d453a12a3fd4b715
3
+ size 17066593104
model-40-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc086b326aad450fef9dc1bee9d06e894f9a93bd1af2d7c1ad58ec6661c12b6c
3
+ size 17066595432
model-41-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6defa0ef782e8db6d48417126b19b971e7fd970d6dca41cca42e110be31709a1
3
+ size 17066595432
model-42-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3964b435c12e2b076f815b6c798c447a5f1b5368b450cd92663486b152edf26
3
+ size 17066595432
model-43-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83658a4ed7f1329cf7b41176a89deac5fbac1f8da02b2d61cd0f5dcb2bb531fc
3
+ size 17066595432
model-44-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac318d216a6e534acd96fc6bbefb7d666d005a7d389ba7a5ad7494a87d7a95fd
3
+ size 17066595432
model-45-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82c1ddd20f07e712205f1a3cf6d9f44ad84f405f63a8a77f9e11fe936538c028
3
+ size 17066595432
model-46-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10e59e5c4e25e9ebc90c927d1d494a9c212cdfb6525ac89d3e56b02409816673
3
+ size 17066595432
model-47-of-61.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20d38a14cae31b03e32e4a4edec78c3447576f171d9e1a7e9b7aef92581580c6
3
+ size 17066595432