Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,98 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
datasets:
|
4 |
-
-
|
5 |
base_model:
|
6 |
-
-
|
7 |
pipeline_tag: text-generation
|
8 |
tags:
|
9 |
- math
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
datasets:
|
4 |
+
- Floppanacci/QWQ-LongCOT-AIMO
|
5 |
base_model:
|
6 |
+
- Floppanacci/DeepSeek-R1-Distill-Qwen-7B-Floppanacci
|
7 |
pipeline_tag: text-generation
|
8 |
tags:
|
9 |
- math
|
10 |
+
- qwen2.5
|
11 |
+
- aimo
|
12 |
+
language:
|
13 |
+
- en
|
14 |
+
---
|
15 |
+
|
16 |
+
# DeepSeek-R1-Distill-Qwen-7B-Floppanacci (4-bit AWQ Quantized)
|
17 |
+
|
18 |
+
This repository contains the 4-bit AWQ (Activation-aware Weight Quantization) version of the [`Floppanacci/DeepSeek-R1-Distill-Qwen-7B-Floppanacci`](https://huggingface.co/Floppanacci/DeepSeek-R1-Distill-Qwen-7B-Floppanacci) model.
|
19 |
+
|
20 |
+
## Model Description
|
21 |
+
|
22 |
+
This model is optimized for faster inference and lower memory footprint compared to the original bf16/fp16 fine-tuned model. It's designed for mathematical reasoning tasks, especially Chain-of-Thought style problem-solving relevant to the [AIMO competition](https://www.kaggle.com/competitions/ai-mathematical-olympiad-progress-prize-2).
|
23 |
+
|
24 |
+
The original model was fine-tuned on the [`Floppanacci/QWQ-LongCOT-AIMO`](https://huggingface.co/datasets/Floppanacci/QWQ-LongCOT-AIMO) dataset.
|
25 |
+
|
26 |
+
## How to Use
|
27 |
+
|
28 |
+
### With `transformers` (and `autoawq`)
|
29 |
+
|
30 |
+
You need to install the `autoawq` library:
|
31 |
+
```bash
|
32 |
+
pip install autoawq transformers torch
|
33 |
+
```
|
34 |
+
|
35 |
+
Then use the model with `transformers`:
|
36 |
+
```python
|
37 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
+
import torch
|
39 |
+
|
40 |
+
model_id = "Floppanacci/DeepSeek-R1-Distill-Qwen-7B-Floppanacci-AWQ"
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
+
# Load the AWQ quantized model
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_id,
|
45 |
+
device_map="auto" # Automatically uses available GPU(s)
|
46 |
+
)
|
47 |
+
|
48 |
+
# Example Prompt (adjust based on how the model expects input)
|
49 |
+
prompt = "Question: Let $ABCD$ be a unit square. Let $P$ be a point inside the square such that $PA = \sqrt{5}/3$, $PB = \sqrt{2}/3$, and $PC = \sqrt{5}/3$. Find the distance $PD$. Answer:"
|
50 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
51 |
+
|
52 |
+
# Generate
|
53 |
+
outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.1, do_sample=False) # Example settings
|
54 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
+
|
56 |
+
print(response)
|
57 |
+
|
58 |
+
```
|
59 |
+
|
60 |
+
### With `vLLM` (Optimized Inference)
|
61 |
+
|
62 |
+
For higher throughput and optimized inference, you can use vLLM.
|
63 |
+
|
64 |
+
First, install vLLM:
|
65 |
+
```bash
|
66 |
+
pip install vllm
|
67 |
+
```
|
68 |
+
|
69 |
+
Then run the following Python code:
|
70 |
+
```python
|
71 |
+
from vllm import LLM, SamplingParams
|
72 |
+
|
73 |
+
# Define prompts
|
74 |
+
prompts = [
|
75 |
+
"Question: Let $ABCD$ be a unit square. Let $P$ be a point inside the square such that $PA = \sqrt{5}/3$, $PB = \sqrt{2}/3$, and $PC = \sqrt{5}/3$. Find the distance $PD$. Answer:",
|
76 |
+
"Question: What is the sum of the first 100 positive integers? Answer:",
|
77 |
+
]
|
78 |
+
|
79 |
+
# Define sampling parameters
|
80 |
+
sampling_params = SamplingParams(temperature=0.1, top_p=0.95, max_tokens=300)
|
81 |
+
|
82 |
+
# Initialize the LLM engine with the AWQ model
|
83 |
+
llm = LLM(model="Floppanacci/DeepSeek-R1-Distill-Qwen-7B-Floppanacci-AWQ",
|
84 |
+
quantization="awq",
|
85 |
+
dtype="auto", # vLLM will typically use half-precision for activations (use bfloat16 on compatible hardware e.g. L4, A100, H100, etc.)
|
86 |
+
trust_remote_code=True
|
87 |
+
)
|
88 |
+
|
89 |
+
# Generate responses
|
90 |
+
outputs = llm.generate(prompts, sampling_params)
|
91 |
+
|
92 |
+
# Print the outputs
|
93 |
+
for output in outputs:
|
94 |
+
prompt = output.prompt
|
95 |
+
generated_text = output.outputs[0].text
|
96 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
97 |
+
|
98 |
+
```
|