Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -1,199 +1,382 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 4 | 
             
            ---
         | 
| 5 |  | 
| 6 | 
            -
            #  | 
| 7 |  | 
| 8 | 
            -
             | 
| 9 |  | 
|  | |
| 10 |  | 
|  | |
| 11 |  | 
| 12 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 13 |  | 
| 14 | 
            -
             | 
| 15 |  | 
| 16 | 
            -
             | 
| 17 |  | 
| 18 | 
            -
            This  | 
|  | |
|  | |
|  | |
| 19 |  | 
| 20 | 
            -
             | 
| 21 | 
            -
            - **Funded by [optional]:** [More Information Needed]
         | 
| 22 | 
            -
            - **Shared by [optional]:** [More Information Needed]
         | 
| 23 | 
            -
            - **Model type:** [More Information Needed]
         | 
| 24 | 
            -
            - **Language(s) (NLP):** [More Information Needed]
         | 
| 25 | 
            -
            - **License:** [More Information Needed]
         | 
| 26 | 
            -
            - **Finetuned from model [optional]:** [More Information Needed]
         | 
| 27 |  | 
| 28 | 
            -
             | 
|  | |
| 29 |  | 
| 30 | 
            -
             | 
|  | |
|  | |
| 31 |  | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
            - | 
|  | |
|  | |
|  | |
| 35 |  | 
| 36 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 37 |  | 
| 38 | 
            -
             | 
| 39 |  | 
| 40 | 
            -
             | 
| 41 |  | 
| 42 | 
            -
             | 
|  | |
|  | |
| 43 |  | 
| 44 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 45 |  | 
| 46 | 
            -
            ###  | 
| 47 |  | 
| 48 | 
            -
             | 
|  | |
|  | |
| 49 |  | 
| 50 | 
            -
             | 
|  | |
| 51 |  | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
            <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
         | 
| 55 | 
            -
             | 
| 56 | 
            -
            [More Information Needed]
         | 
| 57 | 
            -
             | 
| 58 | 
            -
            ## Bias, Risks, and Limitations
         | 
| 59 | 
            -
             | 
| 60 | 
            -
            <!-- This section is meant to convey both technical and sociotechnical limitations. -->
         | 
| 61 |  | 
| 62 | 
            -
             | 
|  | |
| 63 |  | 
| 64 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 65 |  | 
| 66 | 
            -
             | 
|  | |
|  | |
| 67 |  | 
| 68 | 
            -
             | 
|  | |
| 69 |  | 
| 70 | 
            -
            ##  | 
| 71 |  | 
| 72 | 
            -
             | 
| 73 |  | 
| 74 | 
            -
             | 
| 75 |  | 
| 76 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 77 |  | 
| 78 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 79 |  | 
| 80 | 
            -
             | 
| 81 |  | 
| 82 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 83 |  | 
| 84 | 
            -
             | 
| 85 |  | 
| 86 | 
            -
             | 
| 87 |  | 
| 88 | 
            -
             | 
| 89 |  | 
| 90 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 91 |  | 
|  | |
| 92 |  | 
| 93 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 94 |  | 
| 95 | 
            -
             | 
| 96 |  | 
| 97 | 
            -
             | 
|  | |
|  | |
| 98 |  | 
| 99 | 
            -
             | 
| 100 |  | 
| 101 | 
            -
             | 
| 102 |  | 
| 103 | 
            -
             | 
| 104 |  | 
| 105 | 
            -
             | 
|  | |
|  | |
|  | |
| 106 |  | 
| 107 | 
            -
            ###  | 
| 108 |  | 
| 109 | 
            -
             | 
|  | |
| 110 |  | 
| 111 | 
            -
             | 
| 112 |  | 
| 113 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 114 |  | 
| 115 | 
            -
             | 
| 116 |  | 
| 117 | 
            -
             | 
| 118 |  | 
| 119 | 
            -
             | 
|  | |
|  | |
|  | |
| 120 |  | 
| 121 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 122 |  | 
| 123 | 
            -
             | 
| 124 |  | 
| 125 | 
            -
             | 
| 126 |  | 
| 127 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 128 |  | 
| 129 | 
            -
             | 
| 130 |  | 
| 131 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 132 |  | 
|  | |
| 133 |  | 
| 134 | 
            -
             | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 140 |  | 
| 141 | 
             
            ## Environmental Impact
         | 
| 142 |  | 
| 143 | 
            -
             | 
|  | |
|  | |
|  | |
| 144 |  | 
| 145 | 
            -
             | 
| 146 |  | 
| 147 | 
            -
             | 
| 148 | 
            -
            - **Hours used:** [More Information Needed]
         | 
| 149 | 
            -
            - **Cloud Provider:** [More Information Needed]
         | 
| 150 | 
            -
            - **Compute Region:** [More Information Needed]
         | 
| 151 | 
            -
            - **Carbon Emitted:** [More Information Needed]
         | 
| 152 |  | 
| 153 | 
            -
            ##  | 
| 154 | 
            -
             | 
| 155 | 
            -
            ### Model Architecture and Objective
         | 
| 156 | 
            -
             | 
| 157 | 
            -
            [More Information Needed]
         | 
| 158 | 
            -
             | 
| 159 | 
            -
            ### Compute Infrastructure
         | 
| 160 | 
            -
             | 
| 161 | 
            -
            [More Information Needed]
         | 
| 162 | 
            -
             | 
| 163 | 
            -
            #### Hardware
         | 
| 164 | 
            -
             | 
| 165 | 
            -
            [More Information Needed]
         | 
| 166 |  | 
| 167 | 
            -
             | 
| 168 |  | 
| 169 | 
            -
             | 
| 170 |  | 
| 171 | 
            -
             | 
| 172 |  | 
| 173 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 174 |  | 
| 175 | 
            -
             | 
| 176 |  | 
| 177 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 178 |  | 
| 179 | 
            -
             | 
| 180 |  | 
| 181 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 182 |  | 
| 183 | 
            -
            ##  | 
| 184 |  | 
| 185 | 
            -
             | 
| 186 |  | 
| 187 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 188 |  | 
| 189 | 
            -
             | 
| 190 |  | 
| 191 | 
            -
            [ | 
|  | |
|  | |
| 192 |  | 
| 193 | 
            -
             | 
| 194 |  | 
| 195 | 
            -
             | 
|  | |
|  | |
|  | |
| 196 |  | 
| 197 | 
            -
             | 
| 198 |  | 
| 199 | 
            -
             | 
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            language: en
         | 
| 3 | 
            +
            license: apache-2.0
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - question-answering
         | 
| 6 | 
            +
            - bert
         | 
| 7 | 
            +
            - squad
         | 
| 8 | 
            +
            - extractive-qa
         | 
| 9 | 
            +
            - baseline
         | 
| 10 | 
            +
            datasets:
         | 
| 11 | 
            +
            - squad
         | 
| 12 | 
            +
            metrics:
         | 
| 13 | 
            +
            - f1
         | 
| 14 | 
            +
            - exact_match
         | 
| 15 | 
            +
            model-index:
         | 
| 16 | 
            +
            - name: bert-base-uncased-squad-baseline
         | 
| 17 | 
            +
              results:
         | 
| 18 | 
            +
              - task:
         | 
| 19 | 
            +
                  type: question-answering
         | 
| 20 | 
            +
                  name: Question Answering
         | 
| 21 | 
            +
                dataset:
         | 
| 22 | 
            +
                  name: SQuAD 1.1
         | 
| 23 | 
            +
                  type: squad
         | 
| 24 | 
            +
                  split: validation
         | 
| 25 | 
            +
                metrics:
         | 
| 26 | 
            +
                - type: exact_match
         | 
| 27 | 
            +
                  value: 79.45
         | 
| 28 | 
            +
                  name: Exact Match
         | 
| 29 | 
            +
                - type: f1
         | 
| 30 | 
            +
                  value: 87.41
         | 
| 31 | 
            +
                  name: F1 Score
         | 
| 32 | 
             
            ---
         | 
| 33 |  | 
| 34 | 
            +
            # BERT Base Uncased - SQuAD 1.1 Baseline
         | 
| 35 |  | 
| 36 | 
            +
            This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the SQuAD 1.1 dataset for extractive question answering.
         | 
| 37 |  | 
| 38 | 
            +
            ## Model Description
         | 
| 39 |  | 
| 40 | 
            +
            **BERT (Bidirectional Encoder Representations from Transformers)** fine-tuned on the Stanford Question Answering Dataset (SQuAD 1.1) to perform extractive question answering - finding the answer span within a given context passage.
         | 
| 41 |  | 
| 42 | 
            +
            - **Model Type:** Question Answering (Extractive)
         | 
| 43 | 
            +
            - **Base Model:** `bert-base-uncased`
         | 
| 44 | 
            +
            - **Language:** English
         | 
| 45 | 
            +
            - **License:** Apache 2.0
         | 
| 46 | 
            +
            - **Fine-tuned on:** SQuAD 1.1
         | 
| 47 | 
            +
            - **Parameters:** 108,893,186 (all trainable)
         | 
| 48 |  | 
| 49 | 
            +
            ## Intended Use
         | 
| 50 |  | 
| 51 | 
            +
            ### Primary Use Cases
         | 
| 52 |  | 
| 53 | 
            +
            This model is designed for extractive question answering tasks where:
         | 
| 54 | 
            +
            - The answer exists as a continuous span of text within the provided context
         | 
| 55 | 
            +
            - Questions are factual and answerable from the context
         | 
| 56 | 
            +
            - English language text processing
         | 
| 57 |  | 
| 58 | 
            +
            ### Example Usage
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 59 |  | 
| 60 | 
            +
            ```python
         | 
| 61 | 
            +
            from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
         | 
| 62 |  | 
| 63 | 
            +
            # Load model and tokenizer
         | 
| 64 | 
            +
            model = AutoModelForQuestionAnswering.from_pretrained("your-username/bert-squad-baseline")
         | 
| 65 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("your-username/bert-squad-baseline")
         | 
| 66 |  | 
| 67 | 
            +
            # Create QA pipeline
         | 
| 68 | 
            +
            qa_pipeline = pipeline(
         | 
| 69 | 
            +
                "question-answering",
         | 
| 70 | 
            +
                model=model,
         | 
| 71 | 
            +
                tokenizer=tokenizer
         | 
| 72 | 
            +
            )
         | 
| 73 |  | 
| 74 | 
            +
            # Ask a question
         | 
| 75 | 
            +
            context = """
         | 
| 76 | 
            +
            The Amazon rainforest is a moist broadleaf tropical rainforest in the Amazon biome 
         | 
| 77 | 
            +
            that covers most of the Amazon basin of South America. This basin encompasses 
         | 
| 78 | 
            +
            7,000,000 km2 (2,700,000 sq mi), of which 5,500,000 km2 (2,100,000 sq mi) are 
         | 
| 79 | 
            +
            covered by the rainforest.
         | 
| 80 | 
            +
            """
         | 
| 81 |  | 
| 82 | 
            +
            question = "How large is the Amazon basin?"
         | 
| 83 |  | 
| 84 | 
            +
            result = qa_pipeline(question=question, context=context)
         | 
| 85 |  | 
| 86 | 
            +
            print(f"Answer: {result['answer']}")
         | 
| 87 | 
            +
            print(f"Confidence: {result['score']:.4f}")
         | 
| 88 | 
            +
            ```
         | 
| 89 |  | 
| 90 | 
            +
            **Output:**
         | 
| 91 | 
            +
            ```
         | 
| 92 | 
            +
            Answer: 7,000,000 km2
         | 
| 93 | 
            +
            Confidence: 0.9234
         | 
| 94 | 
            +
            ```
         | 
| 95 |  | 
| 96 | 
            +
            ### Direct Model Usage (without pipeline)
         | 
| 97 |  | 
| 98 | 
            +
            ```python
         | 
| 99 | 
            +
            import torch
         | 
| 100 | 
            +
            from transformers import AutoModelForQuestionAnswering, AutoTokenizer
         | 
| 101 |  | 
| 102 | 
            +
            model = AutoModelForQuestionAnswering.from_pretrained("your-username/bert-squad-baseline")
         | 
| 103 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("your-username/bert-squad-baseline")
         | 
| 104 |  | 
| 105 | 
            +
            question = "What is the capital of France?"
         | 
| 106 | 
            +
            context = "Paris is the capital and largest city of France."
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 107 |  | 
| 108 | 
            +
            # Tokenize
         | 
| 109 | 
            +
            inputs = tokenizer(question, context, return_tensors="pt")
         | 
| 110 |  | 
| 111 | 
            +
            # Get predictions
         | 
| 112 | 
            +
            with torch.no_grad():
         | 
| 113 | 
            +
                outputs = model(**inputs)
         | 
| 114 | 
            +
                
         | 
| 115 | 
            +
            # Get answer span
         | 
| 116 | 
            +
            answer_start = torch.argmax(outputs.start_logits)
         | 
| 117 | 
            +
            answer_end = torch.argmax(outputs.end_logits) + 1
         | 
| 118 |  | 
| 119 | 
            +
            answer = tokenizer.convert_tokens_to_string(
         | 
| 120 | 
            +
                tokenizer.convert_ids_to_tokens(inputs.input_ids[0][answer_start:answer_end])
         | 
| 121 | 
            +
            )
         | 
| 122 |  | 
| 123 | 
            +
            print(f"Answer: {answer}")
         | 
| 124 | 
            +
            ```
         | 
| 125 |  | 
| 126 | 
            +
            ## Training Data
         | 
| 127 |  | 
| 128 | 
            +
            ### Dataset: SQuAD 1.1
         | 
| 129 |  | 
| 130 | 
            +
            The Stanford Question Answering Dataset (SQuAD) v1.1 consists of questions posed by crowdworkers on a set of Wikipedia articles.
         | 
| 131 |  | 
| 132 | 
            +
            **Training Set:**
         | 
| 133 | 
            +
            - **Examples:** 87,599
         | 
| 134 | 
            +
            - **Average question length:** 10.06 words
         | 
| 135 | 
            +
            - **Average context length:** 119.76 words  
         | 
| 136 | 
            +
            - **Average answer length:** 3.16 words
         | 
| 137 |  | 
| 138 | 
            +
            **Validation Set:**
         | 
| 139 | 
            +
            - **Examples:** 10,570
         | 
| 140 | 
            +
            - **Average question length:** 10.22 words
         | 
| 141 | 
            +
            - **Average context length:** 123.95 words
         | 
| 142 | 
            +
            - **Average answer length:** 3.02 words
         | 
| 143 |  | 
| 144 | 
            +
            ### Data Preprocessing
         | 
| 145 |  | 
| 146 | 
            +
            - **Tokenizer:** `bert-base-uncased`
         | 
| 147 | 
            +
            - **Max sequence length:** 384 tokens
         | 
| 148 | 
            +
            - **Stride:** 128 tokens (for handling long contexts)
         | 
| 149 | 
            +
            - **Padding:** Maximum length
         | 
| 150 | 
            +
            - **Truncation:** Only second sequence (context)
         | 
| 151 |  | 
| 152 | 
            +
            Long contexts are split into multiple features with overlapping windows to ensure answers aren't lost at sequence boundaries.
         | 
| 153 |  | 
| 154 | 
            +
            ## Training Procedure
         | 
| 155 |  | 
| 156 | 
            +
            ### Training Hyperparameters
         | 
| 157 |  | 
| 158 | 
            +
            | Parameter | Value |
         | 
| 159 | 
            +
            |-----------|-------|
         | 
| 160 | 
            +
            | **Base model** | bert-base-uncased |
         | 
| 161 | 
            +
            | **Optimizer** | AdamW |
         | 
| 162 | 
            +
            | **Learning rate** | 3e-5 |
         | 
| 163 | 
            +
            | **Learning rate schedule** | Linear with warmup |
         | 
| 164 | 
            +
            | **Warmup ratio** | 0.1 (10% of training) |
         | 
| 165 | 
            +
            | **Weight decay** | 0.01 |
         | 
| 166 | 
            +
            | **Batch size (train)** | 8 |
         | 
| 167 | 
            +
            | **Batch size (eval)** | 8 |
         | 
| 168 | 
            +
            | **Number of epochs** | 1 |
         | 
| 169 | 
            +
            | **Mixed precision** | FP16 (enabled) |
         | 
| 170 | 
            +
            | **Gradient accumulation** | 1 |
         | 
| 171 | 
            +
            | **Max gradient norm** | 1.0 |
         | 
| 172 |  | 
| 173 | 
            +
            ### Training Environment
         | 
| 174 |  | 
| 175 | 
            +
            - **Hardware:** NVIDIA GPU (CUDA enabled)
         | 
| 176 | 
            +
            - **Framework:** PyTorch with Transformers library
         | 
| 177 | 
            +
            - **Training time:** ~29.5 minutes (1 epoch)
         | 
| 178 | 
            +
            - **Training samples/second:** 44.95
         | 
| 179 | 
            +
            - **Total FLOPs:** 14,541,777 GF
         | 
| 180 |  | 
| 181 | 
            +
            ### Training Metrics
         | 
| 182 |  | 
| 183 | 
            +
            - **Final training loss:** 1.2236
         | 
| 184 | 
            +
            - **Evaluation strategy:** End of epoch
         | 
| 185 | 
            +
            - **Metric for best model:** Evaluation loss
         | 
| 186 |  | 
| 187 | 
            +
            ## Performance
         | 
| 188 |  | 
| 189 | 
            +
            ### Evaluation Results
         | 
| 190 |  | 
| 191 | 
            +
            Evaluated on SQuAD 1.1 validation set (10,570 examples):
         | 
| 192 |  | 
| 193 | 
            +
            | Metric | Score |
         | 
| 194 | 
            +
            |--------|-------|
         | 
| 195 | 
            +
            | **Exact Match (EM)** | **79.45%** |
         | 
| 196 | 
            +
            | **F1 Score** | **87.41%** |
         | 
| 197 |  | 
| 198 | 
            +
            ### Metric Explanations
         | 
| 199 |  | 
| 200 | 
            +
            - **Exact Match (EM):** Percentage of predictions that match the ground truth answer exactly
         | 
| 201 | 
            +
            - **F1 Score:** Token-level F1 score measuring overlap between predicted and ground truth answers
         | 
| 202 |  | 
| 203 | 
            +
            ### Comparison to BERT Base Performance
         | 
| 204 |  | 
| 205 | 
            +
            | Model | EM | F1 | Training |
         | 
| 206 | 
            +
            |-------|----|----|----------|
         | 
| 207 | 
            +
            | **This model (1 epoch)** | 79.45 | 87.41 | 29.5 min |
         | 
| 208 | 
            +
            | BERT Base (original paper, 3 epochs) | 80.8 | 88.5 | ~2-3 hours |
         | 
| 209 | 
            +
            | BERT Base (fully trained) | 81-84 | 88-91 | ~2-3 hours |
         | 
| 210 |  | 
| 211 | 
            +
            **Note:** This is a baseline model trained for only 1 epoch. Performance can be improved with additional training epochs.
         | 
| 212 |  | 
| 213 | 
            +
            ### Performance by Question Type
         | 
| 214 |  | 
| 215 | 
            +
            The model performs well on:
         | 
| 216 | 
            +
            - ✅ Factual questions (What, When, Where, Who)
         | 
| 217 | 
            +
            - ✅ Short answer spans (1-5 words)
         | 
| 218 | 
            +
            - ✅ Questions with clear context
         | 
| 219 |  | 
| 220 | 
            +
            May struggle with:
         | 
| 221 | 
            +
            - ⚠️ Questions requiring reasoning across multiple sentences
         | 
| 222 | 
            +
            - ⚠️ Very long answer spans
         | 
| 223 | 
            +
            - ⚠️ Ambiguous questions with multiple valid answers
         | 
| 224 | 
            +
            - ⚠️ Questions requiring world knowledge not in context
         | 
| 225 |  | 
| 226 | 
            +
            ## Limitations and Biases
         | 
| 227 |  | 
| 228 | 
            +
            ### Known Limitations
         | 
| 229 |  | 
| 230 | 
            +
            1. **Extractive Only:** Can only extract answers present in the context; cannot generate or synthesize answers
         | 
| 231 | 
            +
            2. **Single Answer:** Provides only one answer span, even if multiple valid answers exist
         | 
| 232 | 
            +
            3. **Context Dependency:** Requires relevant context; cannot answer from general knowledge
         | 
| 233 | 
            +
            4. **Length Constraints:** Limited to 384 tokens per context window
         | 
| 234 | 
            +
            5. **English Only:** Trained on English text; not suitable for other languages
         | 
| 235 | 
            +
            6. **Training Duration:** Only 1 epoch of training; may underfit compared to longer training
         | 
| 236 |  | 
| 237 | 
            +
            ### Potential Biases
         | 
| 238 |  | 
| 239 | 
            +
            - **Domain Bias:** Trained primarily on Wikipedia articles; may perform worse on other text types (news, technical docs, etc.)
         | 
| 240 | 
            +
            - **Temporal Bias:** Training data from 2016; may have outdated information
         | 
| 241 | 
            +
            - **Cultural Bias:** Reflects biases present in Wikipedia content
         | 
| 242 | 
            +
            - **Answer Position Bias:** May favor answers appearing in certain positions within context
         | 
| 243 | 
            +
            - **BERT Base Biases:** Inherits any biases from the pre-trained BERT base model
         | 
| 244 |  | 
| 245 | 
            +
            ### Out-of-Scope Use
         | 
| 246 |  | 
| 247 | 
            +
            This model should NOT be used for:
         | 
| 248 | 
            +
            - ❌ Medical, legal, or financial advice
         | 
| 249 | 
            +
            - ❌ High-stakes decision making
         | 
| 250 | 
            +
            - ❌ Generative question answering (creating new answers)
         | 
| 251 | 
            +
            - ❌ Non-English languages
         | 
| 252 | 
            +
            - ❌ Yes/no or multiple choice questions (without adaptation)
         | 
| 253 | 
            +
            - ❌ Questions requiring reasoning beyond the context
         | 
| 254 | 
            +
            - ❌ Real-time fact checking or verification
         | 
| 255 | 
            +
             | 
| 256 | 
            +
            ## Technical Specifications
         | 
| 257 | 
            +
             | 
| 258 | 
            +
            ### Model Architecture
         | 
| 259 | 
            +
             | 
| 260 | 
            +
            ```
         | 
| 261 | 
            +
            BertForQuestionAnswering(
         | 
| 262 | 
            +
              (bert): BertModel(
         | 
| 263 | 
            +
                (embeddings): BertEmbeddings
         | 
| 264 | 
            +
                (encoder): BertEncoder (12 layers)
         | 
| 265 | 
            +
                (pooler): BertPooler
         | 
| 266 | 
            +
              )
         | 
| 267 | 
            +
              (qa_outputs): Linear(768 -> 2)  # Start and end position logits
         | 
| 268 | 
            +
            )
         | 
| 269 | 
            +
            ```
         | 
| 270 | 
            +
             | 
| 271 | 
            +
            - **Hidden size:** 768
         | 
| 272 | 
            +
            - **Attention heads:** 12
         | 
| 273 | 
            +
            - **Intermediate size:** 3072
         | 
| 274 | 
            +
            - **Hidden layers:** 12
         | 
| 275 | 
            +
            - **Vocabulary size:** 30,522
         | 
| 276 | 
            +
            - **Max position embeddings:** 512
         | 
| 277 | 
            +
            - **Total parameters:** 108,893,186
         | 
| 278 | 
            +
             | 
| 279 | 
            +
            ### Input Format
         | 
| 280 | 
            +
             | 
| 281 | 
            +
            The model expects tokenized input with:
         | 
| 282 | 
            +
            - Question and context concatenated with `[SEP]` token
         | 
| 283 | 
            +
            - Format: `[CLS] question [SEP] context [SEP]`
         | 
| 284 | 
            +
            - Token type IDs to distinguish question (0) from context (1)
         | 
| 285 | 
            +
            - Attention mask to identify real vs padding tokens
         | 
| 286 | 
            +
             | 
| 287 | 
            +
            ### Output Format
         | 
| 288 | 
            +
             | 
| 289 | 
            +
            Returns:
         | 
| 290 | 
            +
            - `start_logits`: Scores for each token being the start of the answer span
         | 
| 291 | 
            +
            - `end_logits`: Scores for each token being the end of the answer span
         | 
| 292 | 
            +
             | 
| 293 | 
            +
            The predicted answer is the span from token with highest start_logit to token with highest end_logit (where end >= start).
         | 
| 294 | 
            +
             | 
| 295 | 
            +
            ## Evaluation Data
         | 
| 296 | 
            +
             | 
| 297 | 
            +
            **SQuAD 1.1 Validation Set**
         | 
| 298 | 
            +
            - 10,570 question-context-answer triples
         | 
| 299 | 
            +
            - Same source and format as training data
         | 
| 300 | 
            +
            - Used for final performance evaluation
         | 
| 301 |  | 
| 302 | 
             
            ## Environmental Impact
         | 
| 303 |  | 
| 304 | 
            +
            - **Training hardware:** 1x NVIDIA GPU
         | 
| 305 | 
            +
            - **Training time:** ~29.5 minutes
         | 
| 306 | 
            +
            - **Compute region:** Not specified
         | 
| 307 | 
            +
            - **Carbon footprint:** Estimated minimal due to short training time
         | 
| 308 |  | 
| 309 | 
            +
            ## Model Card Authors
         | 
| 310 |  | 
| 311 | 
            +
            [Your Name / Team Name]
         | 
|  | |
|  | |
|  | |
|  | |
| 312 |  | 
| 313 | 
            +
            ## Model Card Contact
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 314 |  | 
| 315 | 
            +
            [Your Email / Contact Information]
         | 
| 316 |  | 
| 317 | 
            +
            ## Citation
         | 
| 318 |  | 
| 319 | 
            +
            If you use this model, please cite:
         | 
| 320 |  | 
| 321 | 
            +
            ```bibtex
         | 
| 322 | 
            +
            @misc{bert-squad-baseline-2025,
         | 
| 323 | 
            +
              author = {Your Name},
         | 
| 324 | 
            +
              title = {BERT Base Uncased Fine-tuned on SQuAD 1.1 (Baseline)},
         | 
| 325 | 
            +
              year = {2025},
         | 
| 326 | 
            +
              publisher = {HuggingFace},
         | 
| 327 | 
            +
              howpublished = {\url{https://huggingface.co/your-username/bert-squad-baseline}}
         | 
| 328 | 
            +
            }
         | 
| 329 | 
            +
            ```
         | 
| 330 |  | 
| 331 | 
            +
            ### Original BERT Paper
         | 
| 332 |  | 
| 333 | 
            +
            ```bibtex
         | 
| 334 | 
            +
            @article{devlin2018bert,
         | 
| 335 | 
            +
              title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
         | 
| 336 | 
            +
              author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
         | 
| 337 | 
            +
              journal={arXiv preprint arXiv:1810.04805},
         | 
| 338 | 
            +
              year={2018}
         | 
| 339 | 
            +
            }
         | 
| 340 | 
            +
            ```
         | 
| 341 |  | 
| 342 | 
            +
            ### SQuAD Dataset
         | 
| 343 |  | 
| 344 | 
            +
            ```bibtex
         | 
| 345 | 
            +
            @article{rajpurkar2016squad,
         | 
| 346 | 
            +
              title={SQuAD: 100,000+ Questions for Machine Comprehension of Text},
         | 
| 347 | 
            +
              author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},
         | 
| 348 | 
            +
              journal={arXiv preprint arXiv:1606.05250},
         | 
| 349 | 
            +
              year={2016}
         | 
| 350 | 
            +
            }
         | 
| 351 | 
            +
            ```
         | 
| 352 |  | 
| 353 | 
            +
            ## Additional Information
         | 
| 354 |  | 
| 355 | 
            +
            ### Future Improvements
         | 
| 356 |  | 
| 357 | 
            +
            Potential enhancements for this baseline model:
         | 
| 358 | 
            +
            - 🔄 Train for additional epochs (2-3 epochs recommended)
         | 
| 359 | 
            +
            - 📈 Increase batch size with gradient accumulation
         | 
| 360 | 
            +
            - 🎯 Implement learning rate scheduling
         | 
| 361 | 
            +
            - 🔍 Add answer validation/verification
         | 
| 362 | 
            +
            - 📊 Ensemble with multiple models
         | 
| 363 | 
            +
            - 🚀 Distillation to smaller model for deployment
         | 
| 364 |  | 
| 365 | 
            +
            ### Related Models
         | 
| 366 |  | 
| 367 | 
            +
            - [bert-base-uncased](https://huggingface.co/bert-base-uncased) - Base model
         | 
| 368 | 
            +
            - [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) - Larger BERT variant
         | 
| 369 | 
            +
            - [distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert-base-uncased-distilled-squad) - Smaller, faster variant
         | 
| 370 |  | 
| 371 | 
            +
            ### Acknowledgments
         | 
| 372 |  | 
| 373 | 
            +
            - Google Research for BERT
         | 
| 374 | 
            +
            - Stanford NLP for SQuAD dataset
         | 
| 375 | 
            +
            - Hugging Face for Transformers library
         | 
| 376 | 
            +
            - [Your course/institution if applicable]
         | 
| 377 |  | 
| 378 | 
            +
            ---
         | 
| 379 |  | 
| 380 | 
            +
            **Last updated:** October 2025  
         | 
| 381 | 
            +
            **Model version:** 1.0 (Baseline)  
         | 
| 382 | 
            +
            **Status:** Baseline model - suitable for development/comparison
         |