--- license: mit tags: - pytorch - neural-network - chaos-theory - logistic-map language: - en --- # Logistic Map Approximator (Neural Network) This model approximates the **logistic map equation**: > xₙ₊₁ = r × xₙ × (1 − xₙ) It is trained using a simple feedforward neural network to learn chaotic dynamics across different values of `r` ∈ [2.5, 4.0]. ## Model Details - **Framework:** PyTorch - **Input:** - `x` ∈ [0, 1] - `r` ∈ [2.5, 4.0] - **Output:** `x_next` (approximation of the next value in sequence) - **Loss Function:** Mean Squared Error (MSE) - **Architecture:** 2 hidden layers (ReLU), trained for 100 epochs ## Performance The model closely approximates `x_next` for a wide range of `r` values, including the chaotic regime. ## Files - `logistic_map_approximator.pth`: Trained PyTorch model weights - `mandelbrot.py`: Full training and evaluation code - `README.md`: You're reading it - `example_plot.png`: Comparison of true vs predicted outputs ## Applications - Chaos theory visualizations - Educational tools on non-linear dynamics - Function approximation benchmarking ## License MIT License