Add link to Github repository (#1)
Browse files- Add link to Github repository (da9ed19d5f6fd7ed83a5c1e0c252fb0a45e148dc)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
---
|
|
|
2 |
license: mit
|
3 |
pipeline_tag: text-generation
|
4 |
tags:
|
5 |
- biology
|
6 |
- genomics
|
7 |
- long-context
|
8 |
-
library_name: transformers
|
9 |
---
|
|
|
10 |
# GENERator-eukaryote-3b-base model
|
11 |
|
12 |
## Abouts
|
13 |
In this repository, we present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs and 3B parameters, trained on an expansive dataset comprising 386 billion base pairs of eukaryotic DNA. The extensive and diverse pre-training data endow the GENERator with enhanced understanding and generation capabilities across various organisms.
|
14 |
|
15 |
-
For more technical details, please refer to our paper [GENERator: A Long-Context Generative Genomic Foundation Model](https://huggingface.co/
|
|
|
|
|
16 |
|
17 |
## How to use
|
18 |
### Simple example1: generation
|
@@ -72,7 +75,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
72 |
|
73 |
# Load the tokenizer and model.
|
74 |
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
|
75 |
-
model = AutoModelForCausalLM.from_pretrained("GENERator-eukaryote-3b-base")
|
76 |
|
77 |
config = model.config
|
78 |
max_length = config.max_position_embeddings
|
@@ -132,4 +135,4 @@ print("Sequence Embeddings:", seq_embeddings)
|
|
132 |
primaryClass={cs.CL},
|
133 |
url={https://arxiv.org/abs/2502.07272},
|
134 |
}
|
135 |
-
```
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
license: mit
|
4 |
pipeline_tag: text-generation
|
5 |
tags:
|
6 |
- biology
|
7 |
- genomics
|
8 |
- long-context
|
|
|
9 |
---
|
10 |
+
|
11 |
# GENERator-eukaryote-3b-base model
|
12 |
|
13 |
## Abouts
|
14 |
In this repository, we present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs and 3B parameters, trained on an expansive dataset comprising 386 billion base pairs of eukaryotic DNA. The extensive and diverse pre-training data endow the GENERator with enhanced understanding and generation capabilities across various organisms.
|
15 |
|
16 |
+
For more technical details, please refer to our paper [GENERator: A Long-Context Generative Genomic Foundation Model](https://huggingface.co/papers/2502.07272).
|
17 |
+
|
18 |
+
Code: https://github.com/GenerTeam/GENERator
|
19 |
|
20 |
## How to use
|
21 |
### Simple example1: generation
|
|
|
75 |
|
76 |
# Load the tokenizer and model.
|
77 |
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
|
78 |
+
model = AutoModelForCausalLM.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base")
|
79 |
|
80 |
config = model.config
|
81 |
max_length = config.max_position_embeddings
|
|
|
135 |
primaryClass={cs.CL},
|
136 |
url={https://arxiv.org/abs/2502.07272},
|
137 |
}
|
138 |
+
```
|