Update README.md
Browse files
README.md
CHANGED
@@ -42,50 +42,24 @@ base_model:
|
|
42 |
</head>
|
43 |
<body>
|
44 |
<div class="badges">
|
45 |
-
<a href="
|
46 |
-
<svg viewBox="-64 0 512 512" xmlns="http://www.w3.org/2000/svg">
|
47 |
-
<path d="M369.9 97.9L286 14C277 5 264.8-.1 252.1-.1H48C21.5 0 0 21.5 0 48v416c0 26.5 21.5
|
48 |
-
48 48 48h288c26.5 0 48-21.5 48-48V131.9c0-12.7-5.1-25-14.1-34zM332.1 128H256V51.9l76.1
|
49 |
-
76.1zM48 464V48h160v104c0 13.3 10.7 24 24 24h104v288H48zm250.2-143.7c-12.2-12-47-8.7
|
50 |
-
-64.4-6.5-17.2-10.5-28.7-25-36.8-46.3 3.9-16.1 10.1-40.6 5.4-56-4.2-26.2-37.8-23.6
|
51 |
-
-42.6-5.9-4.4 16.1-.4 38.5 7 67.1-10 23.9-24.9 56-35.4 74.4-20 10.3-47 26.2-51
|
52 |
-
46.2-3.3 15.8 26 55.2 76.1-31.2 22.4-7.4 46.8-16.5 68.4-20.1 18.9 10.2 41 17 55.8
|
53 |
-
17 25.5 0 28-28.2 17.5-38.7zm-198.1 77.8c5.1-13.7 24.5-29.5 30.4-35-19 30.3-30.4
|
54 |
-
35.7-30.4 35zm81.6-190.6c7.4 0 6.7 32.1 1.8 40.8-4.4-13.9-4.3-40.8-1.8-40.8zm-24.4
|
55 |
-
136.6c9.7-16.9 18-37 24.7-54.7 8.3 15.1 18.9 27.2 30.1 35.5-20.8 4.3-38.9 13.1-54.8
|
56 |
-
19.2zm131.6-5s-5 6-37.3-7.8c35.1-2.6 40.9 5.4 37.3 7.8z"/>
|
57 |
-
</svg>arXiv (coming soon)</a><a href="http://blog.goedel-prover.com"
|
58 |
class="badge" target="_blank" rel="noopener">
|
59 |
<span class="emoji"><h1>🌐</h1></span>Website</a><a href="https://huggingface.co/Goedel-LM/Goedel-Prover-V2-32B"
|
60 |
class="badge" target="_blank" rel="noopener">
|
61 |
-
<span class="emoji"><h1>🤗</h1></span>HuggingFace</a
|
62 |
-
class="badge" target="_blank" rel="noopener">
|
63 |
-
<svg viewBox="0 0 64 64" xmlns="http://www.w3.org/2000/svg">
|
64 |
-
<path d="M32.029,8.345c-13.27,0-24.029,10.759-24.029,24.033c0,10.617 6.885,19.624
|
65 |
-
16.435,22.803c1.202,0.22 1.64-0.522 1.64-1.16c0-0.569-0.02-2.081-0.032-4.086
|
66 |
-
c-6.685,1.452-8.095-3.222-8.095-3.222c-1.093-2.775-2.669-3.514-2.669-3.514
|
67 |
-
c-2.182-1.492,0.165-1.462,0.165-1.462c2.412,0.171 3.681,2.477 3.681,2.477
|
68 |
-
c2.144,3.672 5.625,2.611 6.994,1.997c0.219-1.553 0.838-2.612 1.526-3.213
|
69 |
-
c-5.336-0.606-10.947-2.669-10.947-11.877c0-2.623 0.937-4.769 2.474-6.449
|
70 |
-
c-0.247-0.608-1.072-3.051 0.235-6.36c0,0 2.018-0.646 6.609,2.464c1.917-0.533
|
71 |
-
3.973-0.8 6.016-0.809c2.041,0.009 4.097,0.276 6.017,0.809c4.588-3.11
|
72 |
-
6.602-2.464 6.602-2.464c1.311,3.309 0.486,5.752 0.239,6.36c1.54,1.68
|
73 |
-
2.471,3.826 2.471,6.449c0,9.232-5.62,11.263-10.974,11.858c0.864,0.742
|
74 |
-
1.632,2.208 1.632,4.451c0,3.212-0.029,5.804-0.029,6.591c0,0.644
|
75 |
-
0.432,1.392 1.652,1.157c9.542-3.185 16.421-12.186 16.421-22.8c0-13.274
|
76 |
-
-10.76-24.033-24.034-24.033"/>
|
77 |
-
</svg>Code (coming soon)</a>
|
78 |
</div>
|
79 |
</body>
|
80 |
|
81 |
## 1. Introduction
|
82 |
|
83 |
-
We introduce Goedel-Prover-V2, an open-source language model series that
|
84 |
|
85 |
-
Our small model, Goedel-Prover-V2-8B, reaches 83.0% on MiniF2F test set at Pass@32, matching the performance of DeepSeek-Prover-V2-671B while being nearly 100 times smaller in model size. Our flagship model, Goedel-Prover-V2-32B, achieves 88.0% on MiniF2F at Pass@32 and 90.4%
|
86 |
|
87 |
## 2. Benchmark Performance
|
88 |
|
|
|
|
|
89 |
|
90 |
<style>
|
91 |
.fig-row {
|
@@ -128,13 +102,11 @@ Our small model, Goedel-Prover-V2-8B, reaches 83.0% on MiniF2F test set at Pass@
|
|
128 |
</div>
|
129 |
</div>
|
130 |
<figcaption>
|
131 |
-
|
|
|
132 |
</figure>
|
133 |
|
134 |
-
The charts above demonstrate the state-of-the-art performance of Goedel-Prover-V2.
|
135 |
-
<strong>(Left)</strong> On the widely-used MiniF2F benchmark, our 8B model achieves 83.0%, matching much larger models, while our 32B model reaches 88.0% (90.4% with self-correction), outperforming all previous models.
|
136 |
-
<strong>(Middle)</strong> On the challenging PutnamBench, our 32B model solves 43 problems, a significant leap over the previous best of 23.
|
137 |
-
<strong>(Right)</strong> On our newly curated FoMOBench, which contains 360 IMO-level problems, our 32B model solves 73 problems, surpassing DeepSeek-Prover-V2-671B's 50.
|
138 |
|
139 |
|
140 |
<div align="center">
|
@@ -148,9 +120,9 @@ The charts above demonstrate the state-of-the-art performance of Goedel-Prover-V
|
|
148 |
</tr>
|
149 |
</thead>
|
150 |
<tbody>
|
151 |
-
<tr><td>1</td><td>Goedel-Prover-V2-32B (
|
152 |
-
<tr><td>1</td><td>Goedel-Prover-V2-32B (
|
153 |
-
<tr><td>1</td><td>Goedel-Prover-V2-32B</td><td>43</td><td>Pass@32</td></tr>
|
154 |
<tr><td>2</td><td>DeepSeek‑Prover‑V2-671B</td><td>47</td><td>pass@1024</td></tr>
|
155 |
<tr><td>2</td><td>DeepSeek‑Prover‑V2-671B</td><td>22</td><td>pass@32</td></tr>
|
156 |
<tr><td>3</td><td>DSP+</td><td>23</td><td>pass@128</td></tr>
|
@@ -158,7 +130,7 @@ The charts above demonstrate the state-of-the-art performance of Goedel-Prover-V
|
|
158 |
</tbody>
|
159 |
</table>
|
160 |
<!-- table caption -->
|
161 |
-
<caption align="bottom"><strong>Table 1</strong>: <em>PutnamBench leaderboard. Goedel-Prover-V2-32B secures the top rank with significantly less compute than the previous
|
162 |
</div>
|
163 |
|
164 |
## 3. Compelling Scaling Performance
|
@@ -208,13 +180,11 @@ The charts above demonstrate the state-of-the-art performance of Goedel-Prover-V
|
|
208 |
</figcaption>
|
209 |
</figure>
|
210 |
|
211 |
-
The scaling curves
|
212 |
-
<strong>(Left)</strong> The raw performance (Pass@K) shows that both our 8B and 32B models consistently improve as the number of samples (K) increases, demonstrating robust problem-solving capability.
|
213 |
-
<strong>(Right)</strong> The compute-adjusted performance plot further reveals that our models are highly efficient, achieving strong results even at lower compute budgets compared to other models. This underscores the effectiveness of our training methodology.
|
214 |
|
215 |
## 4. Model & Dataset Downloads
|
216 |
|
217 |
-
We release Goedel-Prover-V2
|
218 |
|
219 |
<div align="center">
|
220 |
|
@@ -229,10 +199,14 @@ We release Goedel-Prover-V2 in two model sizes: 8B and 32B parameters, which are
|
|
229 |
|
230 |
| Dataset | Download |
|
231 |
| -------- | -------- |
|
232 |
-
|
|
233 |
|
234 |
</div>
|
235 |
|
|
|
|
|
|
|
|
|
236 |
## 5. Quick Start
|
237 |
You can directly use [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
|
238 |
|
@@ -288,7 +262,7 @@ print(time.time() - start)
|
|
288 |
```bibtex
|
289 |
@misc{lin2025goedelproverv2,
|
290 |
title={Goedel-Prover-V2: The Strongest Open-Source Theorem Prover to Date},
|
291 |
-
author={Yong Lin and Shange Tang and Bohan Lyu and Ziran Yang and Jui-Hui Chung and Haoyu Zhao
|
292 |
year={2025}
|
293 |
}
|
294 |
```
|
|
|
42 |
</head>
|
43 |
<body>
|
44 |
<div class="badges">
|
45 |
+
<a href="http://blog.goedel-prover.com"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
class="badge" target="_blank" rel="noopener">
|
47 |
<span class="emoji"><h1>🌐</h1></span>Website</a><a href="https://huggingface.co/Goedel-LM/Goedel-Prover-V2-32B"
|
48 |
class="badge" target="_blank" rel="noopener">
|
49 |
+
<span class="emoji"><h1>🤗</h1></span>HuggingFace</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
</div>
|
51 |
</body>
|
52 |
|
53 |
## 1. Introduction
|
54 |
|
55 |
+
We introduce Goedel-Prover-V2, an open-source language model series that sets a new state-of-the-art in automated formal proof generation. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) <strong>Scaffolded data synthesis</strong>: We generate synthetic proof tasks of increasing difficulty to progressively train the model, enabling it to master increasingly complex theorems; (2) <strong>Verifier-guided self-correction</strong>: The model learns to iteratively revise its own proofs by leveraging feedback from Lean’s compiler, closely mimicking how humans refine their work; (3) <strong>Model averaging</strong>: We combine multiple model checkpoints to improve robustness and overall performance.
|
56 |
|
57 |
+
Our small model, Goedel-Prover-V2-8B, reaches 83.0% on MiniF2F test set at Pass@32, matching the performance of prior state-of-the-art DeepSeek-Prover-V2-671B while being nearly 100 times smaller in model size. Our flagship model, Goedel-Prover-V2-32B, achieves 88.0% on MiniF2F at Pass@32 on standard mode and 90.4% on self-correction mode, outperforming prior SOTA DeepSeek-Prover-V2-671B and concurrent work Kimina-Prover-72B by a large margin. Additionaly, our flagship model with self-correction solves 64 problems on PutnamBench at Pass@64, securing the 1st on the leaderboard surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by Pass@1024.
|
58 |
|
59 |
## 2. Benchmark Performance
|
60 |
|
61 |
+
<strong>Self-correction mode</strong>: Our model improves proof quality by first generating an initial candidate and then using Lean compiler feedback to iteratively revise it. We perform two rounds of self-correction, which remain computationally efficient—the total output length (including the initial proof and two revisions) increases only modestly from the standard 32K to 40K tokens.
|
62 |
+
|
63 |
|
64 |
<style>
|
65 |
.fig-row {
|
|
|
102 |
</div>
|
103 |
</div>
|
104 |
<figcaption>
|
105 |
+
<strong>Figure 1</strong>: <em>Pass@32 performance on MiniF2F, PutnamBench, and our new MathOlympiadBench containing 360 IMO-level problems.</em>
|
106 |
+
</figcaption>
|
107 |
</figure>
|
108 |
|
109 |
+
The charts above demonstrate the state-of-the-art performance of Goedel-Prover-V2. We report all numbers at Pass@32: (1) Across all three datasets, our flagship 32B model, in both standard and self-correction mode, significantly outperforms prior state-of-the-art DeepSeek-Prover-V2-671B and Kimina-Prover-72B; (2) on miniF2F, our 8B model matches the performance of DeepSeek-Prover-V2-671B while being 100 times smaller in model size.
|
|
|
|
|
|
|
110 |
|
111 |
|
112 |
<div align="center">
|
|
|
120 |
</tr>
|
121 |
</thead>
|
122 |
<tbody>
|
123 |
+
<tr><td>1</td><td><strong>Goedel-Prover-V2-32B (self-correction mode)</strong></td><td><strong>64</strong></td><td><strong>Pass@64</strong></td></tr>
|
124 |
+
<tr><td>1</td><td><strong>Goedel-Prover-V2-32B (self-correction mode)</strong></td><td><strong>57</strong></td><td><strong>Pass@32</strong></td></tr>
|
125 |
+
<tr><td>1</td><td><strong>Goedel-Prover-V2-32B</strong></td><td><strong>43</strong></td><td><strong>Pass@32</strong></td></tr>
|
126 |
<tr><td>2</td><td>DeepSeek‑Prover‑V2-671B</td><td>47</td><td>pass@1024</td></tr>
|
127 |
<tr><td>2</td><td>DeepSeek‑Prover‑V2-671B</td><td>22</td><td>pass@32</td></tr>
|
128 |
<tr><td>3</td><td>DSP+</td><td>23</td><td>pass@128</td></tr>
|
|
|
130 |
</tbody>
|
131 |
</table>
|
132 |
<!-- table caption -->
|
133 |
+
<caption align="bottom"><strong>Table 1</strong>: <em>PutnamBench leaderboard. Goedel-Prover-V2-32B secures the top rank with significantly less compute (pass number) than the previous state-of-the-art.</em>
|
134 |
</div>
|
135 |
|
136 |
## 3. Compelling Scaling Performance
|
|
|
180 |
</figcaption>
|
181 |
</figure>
|
182 |
|
183 |
+
The scaling curves above show that our 32B model consistently outperforms all prior state-of-the-art models across the entire range of inference-time compute budgets.
|
|
|
|
|
184 |
|
185 |
## 4. Model & Dataset Downloads
|
186 |
|
187 |
+
We release our Goedel-Prover-V2 models and the new MathOlympiadBench benchmark to foster future research.
|
188 |
|
189 |
<div align="center">
|
190 |
|
|
|
199 |
|
200 |
| Dataset | Download |
|
201 |
| -------- | -------- |
|
202 |
+
| MathOlympiadBench | [🤗Download](https://huggingface.co/datasets/Goedel-LM/MathOlympiadBench) |
|
203 |
|
204 |
</div>
|
205 |
|
206 |
+
<strong>MathOlympiadBench</strong> (Math Olympiad Bench) comprises human-verified formalizations of Olympiad-level mathematical competition problems, sourced from Compfiles and IMOSLLean4 repository. MathOlympiadBench contains 360 problems, including 158 IMO problems from 1959 to 2024, 131 IMO shortlist problems covering 2006 to 2023, 68 regional mathematical Olympiad problems, and 3 additional mathematical puzzles.
|
207 |
+
|
208 |
+
This model is being released to aid other open-source projects, including those geared towards the upcoming IMO competition. A full paper with all details will be released in the coming weeks.
|
209 |
+
|
210 |
## 5. Quick Start
|
211 |
You can directly use [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
|
212 |
|
|
|
262 |
```bibtex
|
263 |
@misc{lin2025goedelproverv2,
|
264 |
title={Goedel-Prover-V2: The Strongest Open-Source Theorem Prover to Date},
|
265 |
+
author={Yong Lin and Shange Tang and Bohan Lyu and Ziran Yang and Jui-Hui Chung and Haoyu Zhao and Lai Jiang and Yihan Geng and Jiawei Ge and Jingruo Sun and Jiayun Wu and Jiri Gesi and David Acuna and Kaiyu Yang and Hongzhou Lin and Yejin Choi and Danqi Chen and Sanjeev Arora and Chi Jin},
|
266 |
year={2025}
|
267 |
}
|
268 |
```
|