Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,121 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
---
|
4 |
+
# DistilCodec
|
5 |
+
The Joint Laboratory of International Digital Economy Academy (IDEA) and Emdoor, in collaboration with Emdoor Information Technology Co., Ltd., has launched DistilCodec - A Single-Codebook Neural Audio Codec (NAC) with 32768 codes trained on uniersal audio.
|
6 |
+
|
7 |
+
|
8 |
+
[](https://arxiv.org/abs/2408.16532)
|
9 |
+
[](https://huggingface.co/IDEA-Emdoor/DistilCodec-v1.0)
|
10 |
+
|
11 |
+
|
12 |
+
# 🔥 News
|
13 |
+
- *2025.05.25*: We release the code of DistilCodec-v1.0, including training and inference.
|
14 |
+
- *2025.05.23*: We release UniTTS and DistilCodec on [arxiv](https://arxiv.org/abs/2408.16532).
|
15 |
+
|
16 |
+
## Introduction of DistilCodec
|
17 |
+
The foundational network architecture of DistilCodec adopts an Encoder-VQ-Decoder framework
|
18 |
+
similar to that proposed in Soundstream. The encoder employs a ConvNeXt-V2 structure,
|
19 |
+
while the vector quantization module implements the GRFVQ scheme. The decoder
|
20 |
+
employs a ConvTranspose1d based architectural configuration similar to HiFiGAN. Detailed
|
21 |
+
network specifications and layer configurations are provided in Appendix A.1 The training methodol-
|
22 |
+
ogy of DistilCodec follows a similar approach to HiFiGAN, incorporating three types of
|
23 |
+
discriminators: Multi-Period Discriminator (MPD), Multi-Scale Discriminator (MSD), and Multi-
|
24 |
+
STFT Discriminator (MSFTFD). Here is the architecture of Distilcodec:
|
25 |
+

|
26 |
+
Distribution of DistilCodec training data is shown in below table:
|
27 |
+
| **Data Category** | **Data Size (in hours)** |
|
28 |
+
|-----------------------------|--------------------------|
|
29 |
+
| Chinese Audiobook | 38000 |
|
30 |
+
| Chinese Common Audio | 20000 |
|
31 |
+
| English Audio | 40000 |
|
32 |
+
| Music | 2000 |
|
33 |
+
| **Total** | **100000** |
|
34 |
+
|
35 |
+
## Inference of DistilCodec
|
36 |
+
The code is in [DistilCodec](https://github.com/IDEA-Emdoor-Lab/DistilCodec).
|
37 |
+
|
38 |
+
### Part1: Generating discrete codecs
|
39 |
+
|
40 |
+
```python
|
41 |
+
|
42 |
+
from distil_codec import DistilCodec, demo_for_generate_audio_codes
|
43 |
+
|
44 |
+
codec_model_config_path='path_to_model_config'
|
45 |
+
codec_ckpt_path = 'path_to_codec_ckpt_path'
|
46 |
+
step=204000
|
47 |
+
|
48 |
+
codec = DistilCodec.from_pretrained(
|
49 |
+
config_path=codec_model_config_path,
|
50 |
+
model_path=codec_ckpt_path,
|
51 |
+
load_steps=step,
|
52 |
+
use_generator=True,
|
53 |
+
is_debug=False).eval()
|
54 |
+
|
55 |
+
audio_path = 'path_to_audio'
|
56 |
+
audio_tokens = demo_for_generate_audio_codes(codec, audio_path, target_sr=24000)
|
57 |
+
print(audio_tokens)
|
58 |
+
|
59 |
+
```
|
60 |
+
|
61 |
+
### Part2: Reconstruct audio from raw wav
|
62 |
+
```python
|
63 |
+
|
64 |
+
from distil_codec import DistilCodec, demo_for_generate_audio_codes
|
65 |
+
|
66 |
+
codec_model_config_path='path_to_model_config'
|
67 |
+
codec_ckpt_path = 'path_to_codec_ckpt_path'
|
68 |
+
step=204000
|
69 |
+
|
70 |
+
codec = DistilCodec.from_pretrained(
|
71 |
+
config_path=codec_model_config_path,
|
72 |
+
model_path=codec_ckpt_path,
|
73 |
+
load_steps=step,
|
74 |
+
use_generator=True,
|
75 |
+
is_debug=False).eval()
|
76 |
+
|
77 |
+
audio_path = 'path_to_audio'
|
78 |
+
audio_tokens = demo_for_generate_audio_codes(codec, audio_path, target_sr=24000)
|
79 |
+
print(audio_tokens)
|
80 |
+
|
81 |
+
# Setup generated audio save path, the path is f'{gen_audio_save_path}/audio_name.wav'
|
82 |
+
gen_audio_save_path = 'path_to_save_path'
|
83 |
+
audio_name = 'your_audio_name'
|
84 |
+
y_gen = codec.decode_from_codes(audio_tokens, minus_token_offset=True)
|
85 |
+
codec.save_wav(
|
86 |
+
audio_gen_batch=y_gen,
|
87 |
+
nhop_lengths=[y_gen.shape[-1]],
|
88 |
+
save_path=gen_audio_save_path,
|
89 |
+
name_tag=audio_name
|
90 |
+
)
|
91 |
+
|
92 |
+
```
|
93 |
+
|
94 |
+
## Available DistilCodec models
|
95 |
+
🤗 links to the Huggingface model hub.
|
96 |
+
|Model Version| Huggingface | Corpus | Token/s | Domain | Open-Source |
|
97 |
+
|-----------------------|---------|---------------|---------------|-----------------------------------|---------------|
|
98 |
+
| DistilCodec-v1.0 | [🤗](https://huggingface.co/IDEA-Emdoor/DistilCodec-v1.0) | Universal Audio | 93 | Audiobook、Speech、Audio Effects | √ |
|
99 |
+
|
100 |
+
## References
|
101 |
+
The overall training pipeline of DistilCodec draws inspiration from AcademiCodec, while its encoder and decoder design is adapted from fish-speech. The Vector Quantization (VQ) component implements GRFVQ using the vector-quantize-pytorch framework. These three exceptional works have provided invaluable assistance in our implementation of DistilCodec. Below are links to these reference projects:
|
102 |
+
|
103 |
+
[1][vector-quantize-pytorch](https://github.com/lucidrains/vector-quantize-pytorch)
|
104 |
+
|
105 |
+
[2][AcademiCodec](https://github.com/moewiee/hificodec)
|
106 |
+
|
107 |
+
[3][fish-speech](https://github.com/fishaudio/fish-speech)
|
108 |
+
|
109 |
+
|
110 |
+
## Citation
|
111 |
+
|
112 |
+
If you find this code useful in your research, please cite our work:
|
113 |
+
|
114 |
+
```
|
115 |
+
@article{wang2025unitts,
|
116 |
+
title={UniTTS: An end-to-end TTS system without decoupling of acoustic and semantic information},
|
117 |
+
author={Rui Wang,Qianguo Sun,Tianrong Chen,Zhiyun Zeng,Junlong Wu,Jiaxing Zhang},
|
118 |
+
journal={arXiv preprint arXiv:2408.16532},
|
119 |
+
year={2025}
|
120 |
+
}
|
121 |
+
```
|