File size: 2,237 Bytes
e222084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import subprocess
import sys

# Install VLLM using subprocess
subprocess.check_call([
    f"{sys.executable}", "-m", "pip", "install",
    "vllm @ https://github.com/vllm-project/vllm/releases/download/v0.6.1.post1/vllm-0.6.1.post1+cu118-cp310-cp310-manylinux1_x86_64.whl"
])

import json
import logging
import os
from vllm import LLM, SamplingParams

logger = logging.getLogger()
logger.setLevel(logging.INFO)


def model_fn(model_dir, context= None):
    model = LLM(
        model=model_dir,
        trust_remote_code=True,
        gpu_memory_utilization=0.9,
        tensor_parallel_size=4  # Set tensor parallelism to 4 GPUs
    )
    return model
def predict_fn(data, model , context= None):
    try:
        input_text = data.pop("inputs", data)
        parameters = data.pop("parameters", {})
        
        # Qwen 2.5 chat template
        chat_template = f"<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant\n"
        
        sampling_params = SamplingParams(
            temperature=parameters.get("temperature", 0.7),
            top_p=parameters.get("top_p", 0.9),
            max_new_tokens=parameters.get("max_new_tokens", 512),
            do_sample=True,
            stop_tokens=["<|im_end|>", "<|im_start|>"]  # Add stop tokens for Qwen
        )
        
        outputs = model.generate(chat_template, sampling_params)
        generated_text = outputs[0].outputs[0].text
        
        # Remove any trailing stop tokens if they were generated
        for stop_token in ["<|im_end|>", "<|im_start|>"]:
            if generated_text.endswith(stop_token):
                generated_text = generated_text[:-len(stop_token)].strip()
        
        return {"generated_text": generated_text}
    except Exception as e:
        logger.error(f"Exception during prediction: {e}")
        return {"error": str(e)}

def input_fn(request_body, request_content_type,context= None):
    if request_content_type == "application/json":
        return json.loads(request_body)
    else:
        raise ValueError(f"Unsupported content type: {request_content_type}")

def output_fn(prediction, accept , context= None) :
    return json.dumps(prediction)