Upload inference.py (#4)
Browse files- Upload inference.py (22da08d63ba35db029b516c1dee3af044e7019bb)
Co-authored-by: GRINDA AI <[email protected]>
- inference.py +94 -0
inference.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
from vllm import LLM, SamplingParams
|
| 5 |
+
from vllm.utils import random_uuid
|
| 6 |
+
from typing import List, Dict
|
| 7 |
+
|
| 8 |
+
# Function to format chat messages using Qwen's chat template
|
| 9 |
+
def format_chat(messages: List[Dict[str, str]]) -> str:
|
| 10 |
+
"""
|
| 11 |
+
Format chat messages using Qwen's chat template
|
| 12 |
+
"""
|
| 13 |
+
formatted_text = ""
|
| 14 |
+
for message in messages:
|
| 15 |
+
role = message["role"]
|
| 16 |
+
content = message["content"]
|
| 17 |
+
|
| 18 |
+
if role == "system":
|
| 19 |
+
formatted_text += f"<|im_start|>system\n{content}<|im_end|>\n"
|
| 20 |
+
elif role == "user":
|
| 21 |
+
formatted_text += f"<|im_start|>user\n{content}<|im_end|>\n"
|
| 22 |
+
elif role == "assistant":
|
| 23 |
+
formatted_text += f"<|im_start|>assistant\n{content}<|im_end|>\n"
|
| 24 |
+
|
| 25 |
+
# Add the final assistant prompt
|
| 26 |
+
formatted_text += "<|im_start|>assistant\n"
|
| 27 |
+
|
| 28 |
+
return formatted_text
|
| 29 |
+
|
| 30 |
+
# Model loading function for SageMaker
|
| 31 |
+
def model_fn(model_dir):
|
| 32 |
+
# Load the quantized model from the model directory
|
| 33 |
+
model = LLM(
|
| 34 |
+
model=model_dir,
|
| 35 |
+
trust_remote_code=True,
|
| 36 |
+
gpu_memory_utilization=0.9 # Optimal GPU usage
|
| 37 |
+
)
|
| 38 |
+
return model
|
| 39 |
+
|
| 40 |
+
# Custom predict function for SageMaker
|
| 41 |
+
def predict_fn(input_data, model):
|
| 42 |
+
try:
|
| 43 |
+
data = json.loads(input_data)
|
| 44 |
+
|
| 45 |
+
# Format the prompt using Qwen's chat template
|
| 46 |
+
messages = data.get("messages", [])
|
| 47 |
+
formatted_prompt = format_chat(messages)
|
| 48 |
+
|
| 49 |
+
# Build sampling parameters (without do_sample to match OpenAI API)
|
| 50 |
+
sampling_params = SamplingParams(
|
| 51 |
+
temperature=data.get("temperature", 0.7),
|
| 52 |
+
top_p=data.get("top_p", 0.9),
|
| 53 |
+
max_new_tokens=data.get("max_new_tokens", 512),
|
| 54 |
+
top_k=data.get("top_k", -1), # Support for top-k sampling
|
| 55 |
+
repetition_penalty=data.get("repetition_penalty", 1.0),
|
| 56 |
+
length_penalty=data.get("length_penalty", 1.0),
|
| 57 |
+
stop_token_ids=data.get("stop_token_ids", None),
|
| 58 |
+
skip_special_tokens=data.get("skip_special_tokens", True)
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Generate output
|
| 62 |
+
outputs = model.generate(formatted_prompt, sampling_params)
|
| 63 |
+
generated_text = outputs[0].outputs[0].text
|
| 64 |
+
|
| 65 |
+
# Build response
|
| 66 |
+
response = {
|
| 67 |
+
"id": f"chatcmpl-{random_uuid()}",
|
| 68 |
+
"object": "chat.completion",
|
| 69 |
+
"created": int(torch.cuda.current_timestamp()),
|
| 70 |
+
"model": "qwen-72b",
|
| 71 |
+
"choices": [{
|
| 72 |
+
"index": 0,
|
| 73 |
+
"message": {
|
| 74 |
+
"role": "assistant",
|
| 75 |
+
"content": generated_text
|
| 76 |
+
},
|
| 77 |
+
"finish_reason": "stop"
|
| 78 |
+
}],
|
| 79 |
+
"usage": {
|
| 80 |
+
"prompt_tokens": len(formatted_prompt),
|
| 81 |
+
"completion_tokens": len(generated_text),
|
| 82 |
+
"total_tokens": len(formatted_prompt) + len(generated_text)
|
| 83 |
+
}
|
| 84 |
+
}
|
| 85 |
+
return response
|
| 86 |
+
except Exception as e:
|
| 87 |
+
return {"error": str(e), "details": repr(e)}
|
| 88 |
+
|
| 89 |
+
# Define input and output formats for SageMaker
|
| 90 |
+
def input_fn(serialized_input_data, content_type):
|
| 91 |
+
return serialized_input_data
|
| 92 |
+
|
| 93 |
+
def output_fn(prediction_output, accept):
|
| 94 |
+
return json.dumps(prediction_output)
|