|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import warnings | 
					
						
						|  | import shutil | 
					
						
						|  |  | 
					
						
						|  | from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | 
					
						
						|  | import torch | 
					
						
						|  | from llava.model import * | 
					
						
						|  | from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | 
					
						
						|  | import json | 
					
						
						|  | import llava.model.language_model.llava_olmo1p58b as llava_olmo | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs): | 
					
						
						|  | kwargs = {"device_map": device_map, **kwargs} | 
					
						
						|  |  | 
					
						
						|  | if device != "cuda": | 
					
						
						|  | kwargs['device_map'] = {"": device} | 
					
						
						|  |  | 
					
						
						|  | if load_8bit: | 
					
						
						|  | kwargs['load_in_8bit'] = True | 
					
						
						|  | elif load_4bit: | 
					
						
						|  | kwargs['load_in_4bit'] = True | 
					
						
						|  | kwargs['quantization_config'] = BitsAndBytesConfig( | 
					
						
						|  | load_in_4bit=True, | 
					
						
						|  | bnb_4bit_compute_dtype=torch.float16, | 
					
						
						|  | bnb_4bit_use_double_quant=True, | 
					
						
						|  | bnb_4bit_quant_type='nf4' | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | kwargs['torch_dtype'] = torch.float16 | 
					
						
						|  |  | 
					
						
						|  | if use_flash_attn: | 
					
						
						|  | kwargs['attn_implementation'] = 'flash_attention_2' | 
					
						
						|  |  | 
					
						
						|  | if 'llava' in model_name.lower() and 'olmo' not in model_name.lower(): | 
					
						
						|  |  | 
					
						
						|  | if 'lora' in model_name.lower() and model_base is None: | 
					
						
						|  | warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') | 
					
						
						|  | if 'lora' in model_name.lower() and model_base is not None: | 
					
						
						|  | from llava.model.language_model.llava_llama import LlavaConfig | 
					
						
						|  | lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path) | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | 
					
						
						|  | print('Loading LLaVA from base model...') | 
					
						
						|  | model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) | 
					
						
						|  | token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | 
					
						
						|  | if model.lm_head.weight.shape[0] != token_num: | 
					
						
						|  | model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | 
					
						
						|  | model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | 
					
						
						|  |  | 
					
						
						|  | print('Loading additional LLaVA weights...') | 
					
						
						|  | if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): | 
					
						
						|  | non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | from huggingface_hub import hf_hub_download | 
					
						
						|  | def load_from_hf(repo_id, filename, subfolder=None): | 
					
						
						|  | cache_file = hf_hub_download( | 
					
						
						|  | repo_id=repo_id, | 
					
						
						|  | filename=filename, | 
					
						
						|  | subfolder=subfolder) | 
					
						
						|  | return torch.load(cache_file, map_location='cpu') | 
					
						
						|  | non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') | 
					
						
						|  | non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} | 
					
						
						|  | if any(k.startswith('model.model.') for k in non_lora_trainables): | 
					
						
						|  | non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} | 
					
						
						|  | model.load_state_dict(non_lora_trainables, strict=False) | 
					
						
						|  |  | 
					
						
						|  | from peft import PeftModel | 
					
						
						|  | print('Loading LoRA weights...') | 
					
						
						|  | model = PeftModel.from_pretrained(model, model_path) | 
					
						
						|  | print('Merging LoRA weights...') | 
					
						
						|  | model = model.merge_and_unload() | 
					
						
						|  | print('Model is loaded...') | 
					
						
						|  | elif model_base is not None: | 
					
						
						|  |  | 
					
						
						|  | print('Loading LLaVA from base model...') | 
					
						
						|  | if 'mpt' in model_name.lower(): | 
					
						
						|  | if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): | 
					
						
						|  | shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) | 
					
						
						|  | cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) | 
					
						
						|  | model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) | 
					
						
						|  | else: | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | 
					
						
						|  | cfg_pretrained = AutoConfig.from_pretrained(model_path) | 
					
						
						|  | model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') | 
					
						
						|  | mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} | 
					
						
						|  | model.load_state_dict(mm_projector_weights, strict=False) | 
					
						
						|  | else: | 
					
						
						|  | if 'mpt' in model_name.lower(): | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | 
					
						
						|  | model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | 
					
						
						|  | elif 'mistral' in model_name.lower(): | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_path) | 
					
						
						|  | model = LlavaMistralForCausalLM.from_pretrained( | 
					
						
						|  | model_path, | 
					
						
						|  | low_cpu_mem_usage=True, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | 
					
						
						|  | model = LlavaLlamaForCausalLM.from_pretrained( | 
					
						
						|  | model_path, | 
					
						
						|  | low_cpu_mem_usage=True, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) | 
					
						
						|  | elif 'llava' in model_name.lower() and 'olmo' in model_name.lower(): | 
					
						
						|  |  | 
					
						
						|  | print('Setting up LLaVaOLMOBitnet1B for eval........') | 
					
						
						|  | with open('checkpoints/llava-LlavaOLMoBitnet1B-Run2-finetune/config.json') as json_file: | 
					
						
						|  | data = json.load(json_file) | 
					
						
						|  |  | 
					
						
						|  | config_class = llava_olmo.LlavaOLMoBitnet1BConfig(**data) | 
					
						
						|  | model = llava_olmo.LlavaOLMoBitnet1BForCausalLM(config_class).to(device) | 
					
						
						|  | model.model.vision_tower.load_model() | 
					
						
						|  | weight_checkpoint = torch.load('checkpoints/llava-LlavaOLMoBitnet1B-Run3-finetune/pytorch_model.bin') | 
					
						
						|  | model.load_state_dict(weight_checkpoint) | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained( | 
					
						
						|  | "NousResearch/OLMo-Bitnet-1B", | 
					
						
						|  | model_max_length=2048, | 
					
						
						|  | padding_side="right", | 
					
						
						|  | pad_token_id=1, | 
					
						
						|  | use_fast=True, | 
					
						
						|  | legacy=False, | 
					
						
						|  | unk_token='<|padding|>', | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if model_base is not None: | 
					
						
						|  |  | 
					
						
						|  | from peft import PeftModel | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) | 
					
						
						|  | print(f"Loading LoRA weights from {model_path}") | 
					
						
						|  | model = PeftModel.from_pretrained(model, model_path) | 
					
						
						|  | print(f"Merging weights") | 
					
						
						|  | model = model.merge_and_unload() | 
					
						
						|  | print('Convert to FP16...') | 
					
						
						|  | model.to(torch.float16) | 
					
						
						|  | else: | 
					
						
						|  | use_fast = False | 
					
						
						|  | if 'mpt' in model_name.lower(): | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) | 
					
						
						|  | else: | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | image_processor = None | 
					
						
						|  |  | 
					
						
						|  | if 'llava' in model_name.lower(): | 
					
						
						|  | mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | 
					
						
						|  | mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | 
					
						
						|  | if mm_use_im_patch_token: | 
					
						
						|  | tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | 
					
						
						|  | if mm_use_im_start_end: | 
					
						
						|  | tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | 
					
						
						|  | model.resize_token_embeddings(len(tokenizer)) | 
					
						
						|  |  | 
					
						
						|  | vision_tower = model.get_vision_tower() | 
					
						
						|  | if not vision_tower.is_loaded: | 
					
						
						|  | vision_tower.load_model(device_map=device_map) | 
					
						
						|  | if device_map != 'auto': | 
					
						
						|  | vision_tower.to(device=device_map, dtype=torch.float16) | 
					
						
						|  | image_processor = vision_tower.image_processor | 
					
						
						|  |  | 
					
						
						|  | if hasattr(model.config, "max_sequence_length"): | 
					
						
						|  | context_len = model.config.max_sequence_length | 
					
						
						|  | else: | 
					
						
						|  | context_len = 2048 | 
					
						
						|  |  | 
					
						
						|  | return tokenizer, model, image_processor, context_len | 
					
						
						|  |  |