Lauther commited on
Commit
0565eb1
·
verified ·
1 Parent(s): 0b3fde7

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:4151
8
+ - loss:TripletLoss
9
+ base_model: intfloat/multilingual-e5-large-instruct
10
+ widget:
11
+ - source_sentence: flow computer tags
12
+ sentences:
13
+ - "What is an Uncertainty Curve Point?\nAn Uncertainty Curve Point represents a\
14
+ \ data point used to construct the uncertainty curve of a measurement system.\
15
+ \ These curves help analyze how measurement uncertainty behaves under different\
16
+ \ flow rate conditions, ensuring accuracy and reliability in uncertainty assessments.\n\
17
+ \nKey Aspects of an Uncertainty Curve Point:\n- Uncertainty File ID: Links the\
18
+ \ point to the specific uncertainty dataset, ensuring traceability.\nEquipment\
19
+ \ Tag ID: Identifies the equipment associated with the uncertainty measurement,\
20
+ \ crucial for system validation.\n- Uncertainty Points: Represent a list uncertainty\
21
+ \ values recorded at specific conditions, forming part of the overall uncertainty\
22
+ \ curve. Do not confuse this uncertainty points with the calculated uncertainty.\
23
+ \ \n- Flow Rate Points: Corresponding flow rate values at which the uncertainty\
24
+ \ was measured, essential for evaluating performance under varying operational\
25
+ \ conditions.\nThese points are fundamental for generating uncertainty curves,\
26
+ \ which are used in calibration, validation, and compliance assessments to ensure\
27
+ \ measurement reliability in industrial processes.\"\n\n**IMPORTANT**: Do not\
28
+ \ confuse the two types of **Points**:\n - **Uncertainty Curve Point**: Specific\
29
+ \ to a measurement system uncertainty or uncertainty simulation or uncertainty\
30
+ \ curve.\n - **Calibration Point**: Specific to the calibration.\n - **Uncertainty\
31
+ \ values**: Do not confuse these uncertainty points with the single calculated\
32
+ \ uncertainty."
33
+ - 'What is a flow computer?
34
+
35
+ A flow computer is a device used in measurement engineering. It collects analog
36
+ and digital data from flow meters and other sensors.
37
+
38
+
39
+ Key features of a flow computer:
40
+
41
+ - It has a unique name, firmware version, and manufacturer information.
42
+
43
+ - It is designed to record and process data such as temperature, pressure, and
44
+ fluid volume (for gases or oils).'
45
+ - 'What is a Measured Magnitude Value?
46
+
47
+ A Measured Magnitude Value represents a **DAILY** recorded physical measurement
48
+ of a variable within a monitored fluid. These values are essential for tracking
49
+ system performance, analyzing trends, and ensuring accurate monitoring of fluid
50
+ properties.
51
+
52
+
53
+ Key Aspects of a Measured Magnitude Value:
54
+
55
+ - Measurement Date: The timestamp indicating when the measurement was recorded.
56
+
57
+ - Measured Value: The daily numeric result of the recorded physical magnitude.
58
+
59
+ - Measurement System Association: Links the measured value to a specific measurement
60
+ system responsible for capturing the data.
61
+
62
+ - Variable Association: Identifies the specific variable (e.g., temperature, pressure,
63
+ flow rate) corresponding to the recorded value.
64
+
65
+ Measured magnitude values are crucial for real-time monitoring, historical analysis,
66
+ and calibration processes within measurement systems.
67
+
68
+
69
+ Database advices:
70
+
71
+ This values also are in **historics of a flow computer report**. Although, to
72
+ go directly instead querying the flow computer report you can do it by going to
73
+ the table of variables data in the database.'
74
+ - source_sentence: PTE CAPUAVA B
75
+ sentences:
76
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
77
+ \ and reliability of results obtained from equipment or measurement systems. It\
78
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
79
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
80
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
81
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
82
+ \ device or obtained from the **equipment** manufacturer's manual.\n - This\
83
+ \ uncertainty serves as a starting point for further calculations related to the\
84
+ \ equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the\
85
+ \ uncertainty calculated for the overall flow measurement.\n - It depends on\
86
+ \ the uncertainties of the individual variables (magnitudes) and represents the\
87
+ \ combined margin of error for the entire system.\n\nKey points:\n- The uncertainties\
88
+ \ of magnitudes (variables) are the foundation for calculating the uncertainty\
89
+ \ of the measurement system. Think of them as the \"building blocks.\"\n- Do not\
90
+ \ confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**:\
91
+ \ Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
92
+ \ of the measurement system**: Specific to the overall flow measurement."
93
+ - 'What is a Measurement Unit?
94
+
95
+ A Measurement Unit defines the standard for quantifying a physical magnitude (e.g.,
96
+ temperature, pressure, volume). It establishes a consistent reference for interpreting
97
+ values recorded in a measurement system.
98
+
99
+
100
+ Each measurement unit is associated with a specific magnitude, ensuring that values
101
+ are correctly interpreted within their context. For example:
102
+
103
+
104
+ - °C (Celsius) → Used for temperature
105
+
106
+ - psi (pounds per square inch) → Used for pressure
107
+
108
+ - m³ (cubic meters) → Used for volume
109
+
110
+ Measurement units are essential for maintaining consistency across recorded data,
111
+ ensuring comparability, and enabling accurate calculations within measurement
112
+ systems.'
113
+ - "What is a Measurement Type?\nMeasurement types define the classification of measurements\
114
+ \ used within a system based on their purpose and regulatory requirements. These\
115
+ \ types include **fiscal**, **appropriation**, **operational**, and **custody**\
116
+ \ measurements. \n\n- **Fiscal measurements** are used for tax and regulatory\
117
+ \ reporting, ensuring accurate financial transactions based on measured quantities.\
118
+ \ \n- **Appropriation measurements** track resource allocation and ownership\
119
+ \ distribution among stakeholders. \n- **Operational measurements** support real-time\
120
+ \ monitoring and process optimization within industrial operations. \n- **Custody\
121
+ \ measurements** are essential for legal and contractual transactions, ensuring\
122
+ \ precise handover of fluids between parties. \n\nThese classifications play\
123
+ \ a crucial role in compliance, financial accuracy, and operational efficiency\
124
+ \ across industries such as oil and gas, water management, and energy distribution.\
125
+ \ "
126
+ - source_sentence: PTE PARACAMBI A
127
+ sentences:
128
+ - 'What is a Meter Stream?
129
+
130
+ A Meter Stream represents a measurement system configured within a flow computer.
131
+ It serves as the interface between the physical measurement system and the computational
132
+ processes that record and analyze flow data.
133
+
134
+
135
+ Key Aspects of a Meter Stream:
136
+
137
+ - Status: Indicates whether the meter stream is active or inactive.
138
+
139
+ - Measurement System Association: Links the meter stream to a specific measurement
140
+ system, ensuring that the data collected corresponds to a defined physical setup.
141
+
142
+ - Flow Computer Association: Identifies the flow computer responsible for managing
143
+ and recording the measurement system''s data.
144
+
145
+ Why is a Meter Stream Important?
146
+
147
+ A **meter stream** is a critical component in flow measurement, as it ensures
148
+ that the measurement system is correctly integrated into the flow computer for
149
+ accurate monitoring and reporting. Since each flow computer can handle multiple
150
+ meter streams, proper configuration is essential for maintaining data integrity
151
+ and traceability.'
152
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
153
+ \ and reliability of results obtained from equipment or measurement systems. It\
154
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
155
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
156
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
157
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
158
+ \ device or obtained from the **equipment** manufacturer's manual.\n - This\
159
+ \ uncertainty serves as a starting point for further calculations related to the\
160
+ \ equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the\
161
+ \ uncertainty calculated for the overall flow measurement.\n - It depends on\
162
+ \ the uncertainties of the individual variables (magnitudes) and represents the\
163
+ \ combined margin of error for the entire system.\n\nKey points:\n- The uncertainties\
164
+ \ of magnitudes (variables) are the foundation for calculating the uncertainty\
165
+ \ of the measurement system. Think of them as the \"building blocks.\"\n- Do not\
166
+ \ confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**:\
167
+ \ Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
168
+ \ of the measurement system**: Specific to the overall flow measurement."
169
+ - 'What is an Equipment Tag?
170
+
171
+ An Equipment Tag is a unique label string identifier assigned to equipment that
172
+ is actively installed and in use within a measurement system. It differentiates
173
+ between equipment in general (which may be in storage or inactive) and equipment
174
+ that is currently operational in a system.
175
+
176
+
177
+ Key Aspects of Equipment Tags:
178
+
179
+ - Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
180
+ in operation.
181
+
182
+ - Equipment ID: Links the tag to the corresponding equipment unit.
183
+
184
+ - Belonging Measurement System: Specifies which measurement system the tagged
185
+ equipment is part of.
186
+
187
+ - Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
188
+ aiding in organization and system integration.
189
+
190
+ The Equipment Tag is essential for tracking and managing operational equipment
191
+ within a measurement system, ensuring proper identification, monitoring, and maintenance.'
192
+ - source_sentence: PTE UTE BAIXADA FLUMINENSE A
193
+ sentences:
194
+ - 'What are Flow Computer Types?
195
+
196
+ Flow computer types categorize different models of flow computers used in measurement
197
+ systems, such as OMNI, KROHNE, ROC, FC302, S600, FLOWBOSS, F407, F107, and ThermoFisher.
198
+ Each type is defined by its capabilities, functionalities, and applications, determining
199
+ how it processes measurement data, performs calculations, and enables real-time
200
+ monitoring. Understanding these types is essential for selecting the right equipment
201
+ to ensure precise flow measurement, system integration, and operational efficiency.'
202
+ - 'What is an Equipment Type?
203
+
204
+ An Equipment Type defines a category of measurement or monitoring devices used
205
+ in a system. Each type of equipment is classified based on its function, the physical
206
+ magnitude it measures, and its associated measurement unit.
207
+
208
+
209
+ Key Aspects of Equipment Types:
210
+
211
+ - Categorization: Equipment types include devices like transmitters, thermometers,
212
+ and other measurement instruments.
213
+
214
+ - Classification: Equipment can be primary (directly involved in measurement)
215
+ or secondary (supporting measurement processes).
216
+
217
+ - Measurement Unit: Each equipment type is linked to a unit of measure (e.g.,
218
+ °C for temperature, psi for pressure).
219
+
220
+ - Measured Magnitude: Defines what the equipment measures (e.g., temperature,
221
+ pressure, volume).
222
+
223
+ Understanding equipment types ensures correct data interpretation, proper calibration,
224
+ and accurate measurement within a system.'
225
+ - 'What is a measurement system?
226
+
227
+ **Measurement systems** are essential components in industrial measurement and
228
+ processing. They are identified by a unique **Tag** and are associated with a
229
+ specific **installation** and **fluid type**. These systems utilize different
230
+ **measurement technologies**, including **differential (DIF)** and **linear (LIN)**,
231
+ depending on the application. Measurement systems can be classified based on their
232
+ **application type**, such as **fiscal** or **custody transfer**. '
233
+ - source_sentence: PTE BRAGANÇA PAULISTA C
234
+ sentences:
235
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
236
+ \ and reliability of results obtained from equipment or measurement systems. It\
237
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
238
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
239
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
240
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
241
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
242
+ \ serves as a starting point for further calculations related to the equipment.\n\
243
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
244
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
245
+ \ the individual variables (magnitudes) and represents the combined margin of\
246
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
247
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
248
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
249
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
250
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
251
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
252
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
253
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
254
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
255
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
256
+ \ for the overall flow measurement system."
257
+ - 'What is a Measurement Unit?
258
+
259
+ A Measurement Unit defines the standard for quantifying a physical magnitude (e.g.,
260
+ temperature, pressure, volume). It establishes a consistent reference for interpreting
261
+ values recorded in a measurement system.
262
+
263
+
264
+ Each measurement unit is associated with a specific magnitude, ensuring that values
265
+ are correctly interpreted within their context. For example:
266
+
267
+
268
+ - °C (Celsius) → Used for temperature
269
+
270
+ - psi (pounds per square inch) → Used for pressure
271
+
272
+ - m³ (cubic meters) → Used for volume
273
+
274
+ Measurement units are essential for maintaining consistency across recorded data,
275
+ ensuring comparability, and enabling accurate calculations within measurement
276
+ systems.'
277
+ - 'What is an Uncertainty Composition?
278
+
279
+ An Uncertainty Composition represents a specific factor that contributes to the
280
+ overall uncertainty of a measurement system. These components are essential for
281
+ evaluating the accuracy and reliability of measurements by identifying and quantifying
282
+ the sources of uncertainty.
283
+
284
+
285
+ Key Aspects of an Uncertainty Component:
286
+
287
+ - Component Name: Defines the uncertainty factor (e.g., diameter, density, variance,
288
+ covariance) influencing the measurement system.
289
+
290
+ - Value of Composition: Quantifies the component’s contribution to the total uncertainty,
291
+ helping to analyze which factors have the greatest impact.
292
+
293
+ - Uncertainty File ID: Links the component to a specific uncertainty dataset for
294
+ traceability and validation.
295
+
296
+ Understanding these components is critical for uncertainty analysis, ensuring
297
+ compliance with industry standards and improving measurement precision.'
298
+ datasets:
299
+ - Lauther/d4-embeddings-TripletLoss
300
+ pipeline_tag: sentence-similarity
301
+ library_name: sentence-transformers
302
+ ---
303
+
304
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
305
+
306
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [d4-embeddings-triplet_loss](https://huggingface.co/datasets/Lauther/d4-embeddings-TripletLoss) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
307
+
308
+ ## Model Details
309
+
310
+ ### Model Description
311
+ - **Model Type:** Sentence Transformer
312
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision 274baa43b0e13e37fafa6428dbc7938e62e5c439 -->
313
+ - **Maximum Sequence Length:** 512 tokens
314
+ - **Output Dimensionality:** 1024 dimensions
315
+ - **Similarity Function:** Cosine Similarity
316
+ - **Training Dataset:**
317
+ - [d4-embeddings-triplet_loss](https://huggingface.co/datasets/Lauther/d4-embeddings-TripletLoss)
318
+ <!-- - **Language:** Unknown -->
319
+ <!-- - **License:** Unknown -->
320
+
321
+ ### Model Sources
322
+
323
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
324
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
325
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
326
+
327
+ ### Full Model Architecture
328
+
329
+ ```
330
+ SentenceTransformer(
331
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
332
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
333
+ (2): Normalize()
334
+ )
335
+ ```
336
+
337
+ ## Usage
338
+
339
+ ### Direct Usage (Sentence Transformers)
340
+
341
+ First install the Sentence Transformers library:
342
+
343
+ ```bash
344
+ pip install -U sentence-transformers
345
+ ```
346
+
347
+ Then you can load this model and run inference.
348
+ ```python
349
+ from sentence_transformers import SentenceTransformer
350
+
351
+ # Download from the 🤗 Hub
352
+ model = SentenceTransformer("Lauther/d4-embeddings-v3.0")
353
+ # Run inference
354
+ sentences = [
355
+ 'PTE BRAGANÇA PAULISTA C',
356
+ 'What is an Uncertainty Composition?\nAn Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.\n\nKey Aspects of an Uncertainty Component:\n- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.\n- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.\n- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.\nUnderstanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.',
357
+ 'What is a Measurement Unit?\nA Measurement Unit defines the standard for quantifying a physical magnitude (e.g., temperature, pressure, volume). It establishes a consistent reference for interpreting values recorded in a measurement system.\n\nEach measurement unit is associated with a specific magnitude, ensuring that values are correctly interpreted within their context. For example:\n\n- °C (Celsius) → Used for temperature\n- psi (pounds per square inch) → Used for pressure\n- m³ (cubic meters) → Used for volume\nMeasurement units are essential for maintaining consistency across recorded data, ensuring comparability, and enabling accurate calculations within measurement systems.',
358
+ ]
359
+ embeddings = model.encode(sentences)
360
+ print(embeddings.shape)
361
+ # [3, 1024]
362
+
363
+ # Get the similarity scores for the embeddings
364
+ similarities = model.similarity(embeddings, embeddings)
365
+ print(similarities.shape)
366
+ # [3, 3]
367
+ ```
368
+
369
+ <!--
370
+ ### Direct Usage (Transformers)
371
+
372
+ <details><summary>Click to see the direct usage in Transformers</summary>
373
+
374
+ </details>
375
+ -->
376
+
377
+ <!--
378
+ ### Downstream Usage (Sentence Transformers)
379
+
380
+ You can finetune this model on your own dataset.
381
+
382
+ <details><summary>Click to expand</summary>
383
+
384
+ </details>
385
+ -->
386
+
387
+ <!--
388
+ ### Out-of-Scope Use
389
+
390
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
391
+ -->
392
+
393
+ <!--
394
+ ## Bias, Risks and Limitations
395
+
396
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
397
+ -->
398
+
399
+ <!--
400
+ ### Recommendations
401
+
402
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
403
+ -->
404
+
405
+ ## Training Details
406
+
407
+ ### Training Dataset
408
+
409
+ #### d4-embeddings-triplet_loss
410
+
411
+ * Dataset: [d4-embeddings-triplet_loss](https://huggingface.co/datasets/Lauther/d4-embeddings-TripletLoss) at [4d11c52](https://huggingface.co/datasets/Lauther/d4-embeddings-TripletLoss/tree/4d11c524b62bf4c6107b71cebfe0e8947f6db208)
412
+ * Size: 4,151 training samples
413
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
414
+ * Approximate statistics based on the first 1000 samples:
415
+ | | anchor | positive | negative |
416
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
417
+ | type | string | string | string |
418
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.03 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 213.47 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 168.24 tokens</li><li>max: 406 tokens</li></ul> |
419
+ * Samples:
420
+ | anchor | positive | negative |
421
+ |:-----------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
422
+ | <code>Orifice Diameter (mm)</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>What is an Equipment Class?<br>An Equipment Class categorizes different types of equipment based on their function or role within a measurement system. This classification helps in organizing and distinguishing equipment types for operational, maintenance, and analytical purposes.<br><br>Each Equipment Class groups related equipment under a common category. Examples include:<br><br>Primary → Main measurement device in a system.<br>Secondary → Supporting measurement device, often used for verification.<br>Tertiary → Additional measurement equipment.<br>Valves → Flow control devices used in the system.<br>By defining Equipment Classes, the system ensures proper identification, tracking, and management of measurement-related assets.</code> |
423
+ | <code>prueba_gonzalo</code> | <code>What is a measurement system?<br>**Measurement systems** are essential components in industrial measurement and processing. They are identified by a unique **Tag** and are associated with a specific **installation** and **fluid type**. These systems utilize different **measurement technologies**, including **differential (DIF)** and **linear (LIN)**, depending on the application. Measurement systems can be classified based on their **application type**, such as **fiscal** or **custody transfer**. </code> | <code>What is a Measured Magnitude Value?<br>A Measured Magnitude Value represents a **DAILY** recorded physical measurement of a variable within a monitored fluid. These values are essential for tracking system performance, analyzing trends, and ensuring accurate monitoring of fluid properties.<br><br>Key Aspects of a Measured Magnitude Value:<br>- Measurement Date: The timestamp indicating when the measurement was recorded.<br>- Measured Value: The daily numeric result of the recorded physical magnitude.<br>- Measurement System Association: Links the measured value to a specific measurement system responsible for capturing the data.<br>- Variable Association: Identifies the specific variable (e.g., temperature, pressure, flow rate) corresponding to the recorded value.<br>Measured magnitude values are crucial for real-time monitoring, historical analysis, and calibration processes within measurement systems.<br><br>Database advices:<br>This values also are in **historics of a flow computer report**. Although, to go directl...</code> |
424
+ | <code>Vazao Instantanea</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>What is a report index or historic index?<br>Indexes represent the recorded reports generated by flow computers, classified into two types: <br>- **Hourly reports Index**: Store data for hourly events.<br>- **Daily reports Index**: Strore data for daily events.<br><br>These reports, also referred to as historical data or flow computer historical records, contain raw, first-hand measurements directly collected from the flow computer. The data has not been processed or used in any calculations, preserving its original state for analysis or validation.<br><br>The index is essential for locating specific values within the report.</code> |
425
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
426
+ ```json
427
+ {
428
+ "distance_metric": "TripletDistanceMetric.COSINE",
429
+ "triplet_margin": 0.3
430
+ }
431
+ ```
432
+
433
+ ### Evaluation Dataset
434
+
435
+ #### d4-embeddings-triplet_loss
436
+
437
+ * Dataset: [d4-embeddings-triplet_loss](https://huggingface.co/datasets/Lauther/d4-embeddings-TripletLoss) at [4d11c52](https://huggingface.co/datasets/Lauther/d4-embeddings-TripletLoss/tree/4d11c524b62bf4c6107b71cebfe0e8947f6db208)
438
+ * Size: 1,038 evaluation samples
439
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
440
+ * Approximate statistics based on the first 1000 samples:
441
+ | | anchor | positive | negative |
442
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
443
+ | type | string | string | string |
444
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.02 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 209.21 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 172.36 tokens</li><li>max: 406 tokens</li></ul> |
445
+ * Samples:
446
+ | anchor | positive | negative |
447
+ |:--------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
448
+ | <code>FQI-4301.4522B</code> | <code>What is a measurement system?<br>**Measurement systems** are essential components in industrial measurement and processing. They are identified by a unique **Tag** and are associated with a specific **installation** and **fluid type**. These systems utilize different **measurement technologies**, including **differential (DIF)** and **linear (LIN)**, depending on the application. Measurement systems can be classified based on their **application type**, such as **fiscal** or **custody transfer**. </code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the **equipment** manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty...</code> |
449
+ | <code>PTE GUARATINGUETA B</code> | <code>What are historical report values?<br>These represent the recorded data points within flow computer reports. Unlike the report index, which serves as a reference to locate reports, these values contain the actual measurements and calculated data stored in the historical records.<br><br>Flow computer reports store two types of data values:<br><br>- **Hourly data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on an hourly basis.<br>- **Daily data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on a daily basis.<br>Each value is directly linked to its respective report index, ensuring traceability to the original flow computer record. These values maintain their raw integrity, providing a reliable source for analysis and validation.</code> | <code>What is Equipment?<br>An Equipment represents a physical device that may be used within a measurement system. Equipment can be active or inactive and is classified by type, such as transmitters, thermometers, or other measurement-related devices.<br><br>Key Aspects of Equipment:<br>- Serial Number: A unique identifier assigned to each equipment unit for tracking and reference.<br>- Current State: Indicates whether the equipment is currently in use (ACT) or inactive (INA).<br>- Associated Equipment Type: Defines the category of the equipment (e.g., transmitter, thermometer), allowing classification and management.<br>Equipment plays a critical role in measurement systems, ensuring accuracy and reliability in data collection and processing.</code> |
450
+ | <code>PTE BRAGANÇA PAULISTA B</code> | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the **equipment** manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty...</code> |
451
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
452
+ ```json
453
+ {
454
+ "distance_metric": "TripletDistanceMetric.COSINE",
455
+ "triplet_margin": 0.3
456
+ }
457
+ ```
458
+
459
+ ### Training Hyperparameters
460
+ #### Non-Default Hyperparameters
461
+
462
+ - `eval_strategy`: steps
463
+ - `per_device_train_batch_size`: 80
464
+ - `per_device_eval_batch_size`: 80
465
+ - `weight_decay`: 0.01
466
+ - `max_grad_norm`: 0.5
467
+ - `num_train_epochs`: 15
468
+ - `lr_scheduler_type`: cosine
469
+ - `warmup_ratio`: 0.1
470
+ - `fp16`: True
471
+ - `dataloader_num_workers`: 4
472
+
473
+ #### All Hyperparameters
474
+ <details><summary>Click to expand</summary>
475
+
476
+ - `overwrite_output_dir`: False
477
+ - `do_predict`: False
478
+ - `eval_strategy`: steps
479
+ - `prediction_loss_only`: True
480
+ - `per_device_train_batch_size`: 80
481
+ - `per_device_eval_batch_size`: 80
482
+ - `per_gpu_train_batch_size`: None
483
+ - `per_gpu_eval_batch_size`: None
484
+ - `gradient_accumulation_steps`: 1
485
+ - `eval_accumulation_steps`: None
486
+ - `torch_empty_cache_steps`: None
487
+ - `learning_rate`: 5e-05
488
+ - `weight_decay`: 0.01
489
+ - `adam_beta1`: 0.9
490
+ - `adam_beta2`: 0.999
491
+ - `adam_epsilon`: 1e-08
492
+ - `max_grad_norm`: 0.5
493
+ - `num_train_epochs`: 15
494
+ - `max_steps`: -1
495
+ - `lr_scheduler_type`: cosine
496
+ - `lr_scheduler_kwargs`: {}
497
+ - `warmup_ratio`: 0.1
498
+ - `warmup_steps`: 0
499
+ - `log_level`: passive
500
+ - `log_level_replica`: warning
501
+ - `log_on_each_node`: True
502
+ - `logging_nan_inf_filter`: True
503
+ - `save_safetensors`: True
504
+ - `save_on_each_node`: False
505
+ - `save_only_model`: False
506
+ - `restore_callback_states_from_checkpoint`: False
507
+ - `no_cuda`: False
508
+ - `use_cpu`: False
509
+ - `use_mps_device`: False
510
+ - `seed`: 42
511
+ - `data_seed`: None
512
+ - `jit_mode_eval`: False
513
+ - `use_ipex`: False
514
+ - `bf16`: False
515
+ - `fp16`: True
516
+ - `fp16_opt_level`: O1
517
+ - `half_precision_backend`: auto
518
+ - `bf16_full_eval`: False
519
+ - `fp16_full_eval`: False
520
+ - `tf32`: None
521
+ - `local_rank`: 0
522
+ - `ddp_backend`: None
523
+ - `tpu_num_cores`: None
524
+ - `tpu_metrics_debug`: False
525
+ - `debug`: []
526
+ - `dataloader_drop_last`: False
527
+ - `dataloader_num_workers`: 4
528
+ - `dataloader_prefetch_factor`: None
529
+ - `past_index`: -1
530
+ - `disable_tqdm`: False
531
+ - `remove_unused_columns`: True
532
+ - `label_names`: None
533
+ - `load_best_model_at_end`: False
534
+ - `ignore_data_skip`: False
535
+ - `fsdp`: []
536
+ - `fsdp_min_num_params`: 0
537
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
538
+ - `fsdp_transformer_layer_cls_to_wrap`: None
539
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
540
+ - `deepspeed`: None
541
+ - `label_smoothing_factor`: 0.0
542
+ - `optim`: adamw_torch
543
+ - `optim_args`: None
544
+ - `adafactor`: False
545
+ - `group_by_length`: False
546
+ - `length_column_name`: length
547
+ - `ddp_find_unused_parameters`: None
548
+ - `ddp_bucket_cap_mb`: None
549
+ - `ddp_broadcast_buffers`: False
550
+ - `dataloader_pin_memory`: True
551
+ - `dataloader_persistent_workers`: False
552
+ - `skip_memory_metrics`: True
553
+ - `use_legacy_prediction_loop`: False
554
+ - `push_to_hub`: False
555
+ - `resume_from_checkpoint`: None
556
+ - `hub_model_id`: None
557
+ - `hub_strategy`: every_save
558
+ - `hub_private_repo`: None
559
+ - `hub_always_push`: False
560
+ - `gradient_checkpointing`: False
561
+ - `gradient_checkpointing_kwargs`: None
562
+ - `include_inputs_for_metrics`: False
563
+ - `include_for_metrics`: []
564
+ - `eval_do_concat_batches`: True
565
+ - `fp16_backend`: auto
566
+ - `push_to_hub_model_id`: None
567
+ - `push_to_hub_organization`: None
568
+ - `mp_parameters`:
569
+ - `auto_find_batch_size`: False
570
+ - `full_determinism`: False
571
+ - `torchdynamo`: None
572
+ - `ray_scope`: last
573
+ - `ddp_timeout`: 1800
574
+ - `torch_compile`: False
575
+ - `torch_compile_backend`: None
576
+ - `torch_compile_mode`: None
577
+ - `dispatch_batches`: None
578
+ - `split_batches`: None
579
+ - `include_tokens_per_second`: False
580
+ - `include_num_input_tokens_seen`: False
581
+ - `neftune_noise_alpha`: None
582
+ - `optim_target_modules`: None
583
+ - `batch_eval_metrics`: False
584
+ - `eval_on_start`: False
585
+ - `use_liger_kernel`: False
586
+ - `eval_use_gather_object`: False
587
+ - `average_tokens_across_devices`: False
588
+ - `prompts`: None
589
+ - `batch_sampler`: batch_sampler
590
+ - `multi_dataset_batch_sampler`: proportional
591
+
592
+ </details>
593
+
594
+ ### Framework Versions
595
+ - Python: 3.11.0
596
+ - Sentence Transformers: 3.4.1
597
+ - Transformers: 4.49.0
598
+ - PyTorch: 2.6.0+cu124
599
+ - Accelerate: 1.4.0
600
+ - Datasets: 3.3.2
601
+ - Tokenizers: 0.21.0
602
+
603
+ ## Citation
604
+
605
+ ### BibTeX
606
+
607
+ #### Sentence Transformers
608
+ ```bibtex
609
+ @inproceedings{reimers-2019-sentence-bert,
610
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
611
+ author = "Reimers, Nils and Gurevych, Iryna",
612
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
613
+ month = "11",
614
+ year = "2019",
615
+ publisher = "Association for Computational Linguistics",
616
+ url = "https://arxiv.org/abs/1908.10084",
617
+ }
618
+ ```
619
+
620
+ #### TripletLoss
621
+ ```bibtex
622
+ @misc{hermans2017defense,
623
+ title={In Defense of the Triplet Loss for Person Re-Identification},
624
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
625
+ year={2017},
626
+ eprint={1703.07737},
627
+ archivePrefix={arXiv},
628
+ primaryClass={cs.CV}
629
+ }
630
+ ```
631
+
632
+ <!--
633
+ ## Glossary
634
+
635
+ *Clearly define terms in order to be accessible across audiences.*
636
+ -->
637
+
638
+ <!--
639
+ ## Model Card Authors
640
+
641
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
642
+ -->
643
+
644
+ <!--
645
+ ## Model Card Contact
646
+
647
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
648
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/azureuser/projects/embeddings-train/.models/finetuned--d4-embeddings-v1.0-TripletLoss",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.49.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfb7d1c1ee8ed8f720c415a05c685351ddf6bc0ed53c1c47945d3f3e60278c30
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizerFast",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }