File size: 4,258 Bytes
6dc8c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# How to Use the Advanced Magnus Chess Model from Hugging Face

## Quick Start Guide

Once your model is uploaded to Hugging Face, here's how others can use it:

### 1. Installation

```bash
pip install huggingface_hub torch chess numpy pyyaml scikit-learn
```

### 2. Download and Use the Model

```python
from huggingface_hub import hf_hub_download
import chess
import sys
import os

# Download model files (replace YOUR_USERNAME with your actual username)
repo_id = "YOUR_USERNAME/advanced-magnus-chess-model"

# Download required files
model_path = hf_hub_download(repo_id=repo_id, filename="model.pth")
predictor_path = hf_hub_download(repo_id=repo_id, filename="advanced_magnus_predictor.py")
config_path = hf_hub_download(repo_id=repo_id, filename="config.yaml")

# Add the download directory to Python path
download_dir = os.path.dirname(model_path)
sys.path.append(download_dir)

# Import and use the predictor
from advanced_magnus_predictor import AdvancedMagnusPredictor

# Initialize the predictor
predictor = AdvancedMagnusPredictor()

# Analyze a chess position
board = chess.Board("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1")
predictions = predictor.predict_moves(board, top_k=5)

print("Magnus-style move predictions:")
for i, pred in enumerate(predictions, 1):
    move = pred['move']
    confidence = pred['confidence']
    san = board.san(chess.Move.from_uci(move))
    print(f"{i}. {san} ({move}) - {confidence:.3f} confidence")
```

### 3. Example Output

```
Magnus-style move predictions:
1. c5 (c7c5) - 0.145 confidence
2. e5 (e7e5) - 0.123 confidence
3. Nf6 (g8f6) - 0.098 confidence
4. d6 (d7d6) - 0.087 confidence
5. e6 (e7e6) - 0.075 confidence
```

## Advanced Usage

### Batch Analysis

```python
positions = [
    "rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1",
    "rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2",
    "rnbqkbnr/ppp1pppp/8/3p4/2PP4/8/PP2PPPP/RNBQKBNR b KQkq c3 0 2"
]

for i, fen in enumerate(positions):
    print(f"\nPosition {i+1}: {fen}")
    board = chess.Board(fen)
    predictions = predictor.predict_moves(board, top_k=3)

    for pred in predictions:
        san = board.san(chess.Move.from_uci(pred['move']))
        print(f"  {san}: {pred['confidence']:.3f}")
```

### Integration with Chess Engines

```python
import chess.engine

# Combine Magnus predictions with Stockfish analysis
stockfish = chess.engine.SimpleEngine.popen_uci("/path/to/stockfish")

board = chess.Board("your_position_fen")

# Get Magnus-style predictions
magnus_predictions = predictor.predict_moves(board, top_k=5)

# Get engine analysis
engine_result = stockfish.play(board, chess.engine.Limit(time=1.0))
engine_move = engine_result.move.uci()

print("Magnus predictions vs Engine:")
for pred in magnus_predictions:
    move = pred['move']
    san = board.san(chess.Move.from_uci(move))
    marker = " ⭐" if move == engine_move else ""
    print(f"  {san}: {pred['confidence']:.3f}{marker}")

stockfish.quit()
```

## Model Features

-   **Style Emulation**: Predicts moves in Magnus Carlsen's characteristic style
-   **High Accuracy**: 6.65% exact match, 14.17% top-5 accuracy
-   **Fast Inference**: ~50ms per position
-   **Comprehensive**: Handles all chess positions and game phases
-   **Educational**: Perfect for learning Magnus's strategic concepts

## Use Cases

1. **Chess Training**: Learn Magnus's move preferences
2. **Game Analysis**: Understand Magnus-style thinking
3. **AI Development**: Building chess applications
4. **Research**: Studying player-specific chess styles
5. **Educational Tools**: Teaching advanced chess concepts

## Technical Notes

-   Model requires position feature extraction
-   Works best with properly formatted FEN strings
-   Optimized for modern hardware (GPU/MPS supported)
-   Compatible with standard chess libraries

## Support

For issues or questions about using the model, please check the model repository on Hugging Face or create an issue in the original project repository.

## Citation

```bibtex
@misc{advanced_magnus_chess_model_2025,
  title={Advanced Magnus Carlsen Chess Model},
  author={Chess AI Research Team},
  year={2025},
  url={https://huggingface.co/YOUR_USERNAME/advanced-magnus-chess-model}
}
```