File size: 1,139 Bytes
5d7fac2 dc37407 5d7fac2 dc37407 4bd6e91 dc37407 5d7fac2 dc37407 5d7fac2 dc37407 5d7fac2 dc37407 5d7fac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
---
license: mit
base_model:
- utter-project/EuroLLM-9B-Instruct
---
# EuroLLM QLoRA – Grounding Act Classification
This model is a fine-tuned version of [EuroLLM-9B-Instruct](https://huggingface.co/utter-project/EuroLLM-9B-Instruct) optimized using QLoRA for efficient binary classification of German dialogue utterances into:
ADVANCE: Contribution that moves the dialogue forward (e.g. confirmations, follow-ups, elaborations)
NON-ADVANCE: Other utterances (e.g. vague responses, misunderstandings, irrelevant comments)
## Use Cases
Dialogue system analysis
Teacher-student interaction classification
Grounding in institutional advising or classroom discourse
## How to Use
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel, PeftConfig
peft_config = PeftConfig.from_pretrained("MB55/EuroLLM-Classifier-QLoRA")
base_model = AutoModelForSequenceClassification.from_pretrained(peft_config.base_model_name_or_path)
model = PeftModel.from_pretrained(base_model, "MB55/EuroLLM-Classifier-QLoRA")
tokenizer = AutoTokenizer.from_pretrained("MB55/EuroLLM-Classifier-QLoRA") |