File size: 5,203 Bytes
cb95574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec5d10
cb95574
 
 
eec5d10
cb95574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec5d10
cb95574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec5d10
9e1ee6d
 
 
 
 
 
 
 
ed67948
cb95574
 
eec5d10
cb95574
 
 
 
eec5d10
cb95574
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
'''
This is the ECAPA-TDNN model.
This model is modified and combined based on the following three projects:
  1. https://github.com/clovaai/voxceleb_trainer/issues/86
  2. https://github.com/lawlict/ECAPA-TDNN/blob/master/ecapa_tdnn.py
  3. https://github.com/speechbrain/speechbrain/blob/96077e9a1afff89d3f5ff47cab4bca0202770e4f/speechbrain/lobes/models/ECAPA_TDNN.py

'''

import math, torch, torchaudio
import torch.nn as nn
import torch.nn.functional as F

class SEModule(nn.Module):
    def __init__(self, channels, bottleneck=128):
        super(SEModule, self).__init__()
        self.se = nn.Sequential(
            nn.AdaptiveAvgPool1d(1),
            nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0),
            nn.ReLU(),
            # nn.BatchNorm1d(bottleneck), # I remove this layer
            nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0),
            nn.Sigmoid(),
            )

    def forward(self, input):
        x = self.se(input)
        return input * x

class Bottle2neck(nn.Module):

    def __init__(self, inplanes, planes, kernel_size=None, dilation=None, scale = 8):
        super(Bottle2neck, self).__init__()
        width       = int(math.floor(planes / scale))
        self.conv1  = nn.Conv1d(inplanes, width*scale, kernel_size=1)
        self.bn1    = nn.BatchNorm1d(width*scale)
        self.nums   = scale -1
        convs       = []
        bns         = []
        num_pad = math.floor(kernel_size/2)*dilation
        for i in range(self.nums):
            convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad))
            bns.append(nn.BatchNorm1d(width))
        self.convs  = nn.ModuleList(convs)
        self.bns    = nn.ModuleList(bns)
        self.conv3  = nn.Conv1d(width*scale, planes, kernel_size=1)
        self.bn3    = nn.BatchNorm1d(planes)
        self.relu   = nn.ReLU()
        self.width  = width
        self.se     = SEModule(planes)

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.relu(out)
        out = self.bn1(out)

        spx = torch.split(out, self.width, 1)
        for i in range(self.nums):
          if i==0:
            sp = spx[i]
          else:
            sp = sp + spx[i]
          sp = self.convs[i](sp)
          sp = self.relu(sp)
          sp = self.bns[i](sp)
          if i==0:
            out = sp
          else:
            out = torch.cat((out, sp), 1)
        out = torch.cat((out, spx[self.nums]),1)

        out = self.conv3(out)
        out = self.relu(out)
        out = self.bn3(out)
        
        out = self.se(out)
        out += residual
        return out 

class EcapaTdnnEncoder(nn.Module):

    def __init__(self, C):

        super(EcapaTdnnEncoder, self).__init__()

        # self.conv1  = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
        # self.conv1  = nn.Conv1d(256, C, kernel_size=5, stride=1, padding=2)
        self.conv1  = nn.Conv1d(232, C, kernel_size=5, stride=1, padding=2)
        self.relu   = nn.ReLU()
        self.bn1    = nn.BatchNorm1d(C)
        self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8)
        self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8)
        self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8)
        # I fixed the shape of the output from MFA layer, that is close to the setting from ECAPA paper.
        self.layer4 = nn.Conv1d(3*C, 1536, kernel_size=1)
        self.attention = nn.Sequential(
            nn.Conv1d(4608, 256, kernel_size=1),
            nn.ReLU(),
            nn.BatchNorm1d(256),
            nn.Tanh(), # I add this layer
            nn.Conv1d(256, 1536, kernel_size=1),
            nn.Softmax(dim=2),
            )
        self.bn5 = nn.BatchNorm1d(3072)
        self.fc6 = nn.Linear(3072, 192)
        self.bn6 = nn.BatchNorm1d(192)


    def forward(self, x):
        
        x = self.conv1(x)
        x = self.relu(x)
        x = self.bn1(x)

        x1 = self.layer1(x)
        x2 = self.layer2(x+x1)
        x3 = self.layer3(x+x1+x2)

        x = self.layer4(torch.cat((x1,x2,x3),dim=1))
        x = self.relu(x)

        t = x.size()[-1]

        global_x = torch.cat((x,torch.mean(x,dim=2,keepdim=True).repeat(1,1,t), torch.sqrt(torch.var(x,dim=2,keepdim=True).clamp(min=1e-4)).repeat(1,1,t)), dim=1)
        
        w = self.attention(global_x)

        mu = torch.sum(x * w, dim=2)
        sg = torch.sqrt( ( torch.sum((x**2) * w, dim=2) - mu**2 ).clamp(min=1e-4) )

        x = torch.cat((mu,sg),1)
        x = self.bn5(x)
        x = self.fc6(x)
        x = self.bn6(x)

        return x
    
    
import torch
from transformers import PreTrainedModel, PretrainedConfig


class ECAPAConfig(PretrainedConfig):
    model_type = "ecapa_tdnn"
    def __init__(self, C=1024, **kwargs):
        super().__init__(**kwargs)
        self.C = C




class SpeakerEncoder(PreTrainedModel):
    config_class = ECAPAConfig
    base_model_prefix = "ecapa_tdnn"
    def __init__(self, config):
        super().__init__(config)
        self.model = EcapaTdnnEncoder(C=config.C)
    def forward(self, *args, **kwargs):
        return self.model(*args, **kwargs)