File size: 6,528 Bytes
8d4d0f0 0836361 8d4d0f0 0836361 8d4d0f0 0836361 8d4d0f0 66b7216 8d4d0f0 0836361 8d4d0f0 0836361 8d4d0f0 0836361 8d4d0f0 84aa403 8d4d0f0 0836361 8d4d0f0 0836361 8d4d0f0 0836361 8d4d0f0 0836361 8d4d0f0 0836361 8d4d0f0 5c23344 8d4d0f0 0836361 ad3aadd 0836361 8d4d0f0 0836361 8d4d0f0 66b7216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
license: apache-2.0
tags:
- text-generation
- language-model
- causal-lm
- cosmicfish
- 90m
- transformer
- rope
- gqa
- swiglu
- rmsnorm
language: en
datasets:
- CosmicSet-2.0-mini
- akkiisfrommars/TreeCorpusCleanedmodel
model_type: CosmicFish
pipeline_tag: text-generation
---
# CosmicFish-90M
A 90M parameter language model with modern architecture improvements developed by Mistyoz AI.
## Quick Start
**The easiest way to chat with CosmicFish is using our chat.py script:**
```bash
# Download the chat script from this repository
wget https://huggingface.co/MistyozAI/CosmicFish-90M/resolve/main/chat.py
# Install dependencies
pip install transformers huggingface-hub termcolor safetensors
# Run the chat interface (automatically downloads model)
python chat.py
```
The `chat.py` script handles all model loading, generation, and provides the best chat experience with live streaming, repetition penalty, and conversation commands.
## Model Details
- **Parameters**: 91.6M
- **Architecture**: CosmicFish (RoPE, GQA, SwiGLU, RMSNorm)
- **Context Length**: 512 tokens
- **Vocabulary**: 50,257 tokens
- **Training Data**: CosmicSet 2.0 mini
- **Developer**: Mistyoz AI
- **Repository**: MistyozAI/CosmicFish-90M
- **Format**: Safetensors
## Usage
### Installation
```bash
pip install transformers huggingface-hub termcolor safetensors torch
```
### Quick Chat Interface
```python
from transformers import GPT2Tokenizer
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
import torch
import json
import os
# Download model from Hugging Face Hub
cache_dir = snapshot_download(repo_id="MistyozAI/CosmicFish-90M")
# Load tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Load config
with open(os.path.join(cache_dir, "config.json")) as f:
config_dict = json.load(f)
# Load model weights from safetensors
state_dict = load_file(os.path.join(cache_dir, "model.safetensors"))
# Note: Full model class available in the repository
print("Model downloaded and ready for use!")
```
### Advanced Generation with Repetition Penalty
```python
def generate_with_repetition_penalty(model, tokenizer, prompt, max_tokens=100, temperature=0.5, penalty=1.2):
input_ids = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
generated = input_ids.clone()
for _ in range(max_tokens):
with torch.no_grad():
logits, _ = model(generated)
next_token_logits = logits[:, -1, :] / temperature
# Apply repetition penalty
if penalty > 1.0:
for token_id in set(generated[0].tolist()):
if next_token_logits[0, token_id] > 0:
next_token_logits[0, token_id] /= penalty
else:
next_token_logits[0, token_id] *= penalty
probs = torch.nn.functional.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
if next_token.item() == tokenizer.eos_token_id:
break
generated = torch.cat([generated, next_token], dim=1)
return tokenizer.decode(generated[0], skip_special_tokens=True)
```
### Loading Model with Safetensors
```python
from safetensors.torch import load_file
from modeling_cosmicfish import CosmicFish, CosmicConfig
import json
def load_cosmicfish_model(model_path):
# Load config
with open(os.path.join(model_path, "config.json")) as f:
config_dict = json.load(f)
# Create model config
config = CosmicConfig(
vocab_size=config_dict["vocab_size"],
block_size=config_dict["block_size"],
n_layer=config_dict["n_layer"],
n_head=config_dict["n_head"],
n_embd=config_dict["n_embd"],
bias=config_dict["bias"],
dropout=0.0,
use_rotary=config_dict["use_rotary"],
use_swiglu=config_dict["use_swiglu"],
use_gqa=config_dict["use_gqa"],
n_query_groups=config_dict["n_query_groups"]
)
# Create model
model = CosmicFish(config)
# Load weights from safetensors (secure format)
state_dict = load_file(os.path.join(model_path, "model.safetensors"))
# Handle weight sharing (lm_head.weight shares with transformer.wte.weight)
if 'lm_head.weight' not in state_dict and 'transformer.wte.weight' in state_dict:
state_dict['lm_head.weight'] = state_dict['transformer.wte.weight']
model.load_state_dict(state_dict)
model.eval()
return model
```
### Chat Interface
```python
def chat_with_model():
conversation = []
while True:
user_input = input("You: ")
if user_input.lower() in ['quit', 'exit']:
break
context = "Below is a conversation between a human and an AI assistant.\n\n"
for human, ai in conversation:
context += f"Human: {human}\nAssistant: {ai}\n\n"
context += f"Human: {user_input}\nAssistant:"
# Generate response with repetition penalty
response = generate_with_repetition_penalty(
model, tokenizer, context,
max_tokens=150, temperature=0.7, penalty=1.2
)
# Extract just the assistant's response
response = response.split("Assistant:")[-1].split('\n')[0].strip()
print(f"CosmicFish: {response}")
conversation.append((user_input, response))
chat_with_model()
```
## Architecture
CosmicFish uses several modern improvements over standard transformers:
- **RoPE (Rotary Position Embeddings)**: Better position encoding than absolute positions
- **GQA (Grouped-Query Attention)**: Reduces memory usage with 4 query groups
- **SwiGLU**: More effective activation function than ReLU/GELU
- **RMSNorm**: Simpler, more stable normalization than LayerNorm
## Training
- **Dataset**: CosmicSet 2.0 mini
- **Sequence Length**: 512 tokens
- **Training Steps**: ~200K iterations
- **Hardware**: Nvidia A40 x1
## Performance
- **Speed**: Varies by hardware (not benchmarked)
- **Memory**: ~256MB RAM
- **File Size**: 185MB
- **Loading**: Fast and secure with safetensors
## Limitations
- Small model size (90M parameters) may produce less accurate responses
- 512 token context limit
- English only
- Training data cutoff applies
- May generate incorrect information
- Cannot browse internet or access real-time data
## License
Apache 2.0 - see LICENSE file.
## Credit
If you use CosmicFish-90M, please credit Mistyoz AI. |