File size: 45,517 Bytes
eed5764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3bc2dc
eed5764
 
 
 
 
 
 
 
 
 
 
b3bc2dc
eed5764
b3bc2dc
eed5764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3bc2dc
eed5764
b3bc2dc
eed5764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3bc2dc
eed5764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
"""
Chat interface for CosmicFish model downloaded from Hugging Face Hub.
Uses safetensors format only for secure model loading.
"""

import os
import sys
import time
import argparse
import torch
import numpy as np
from termcolor import colored
import logging
import readline
import re
import textwrap
import random
from collections import defaultdict
import json

# Required imports for HF Hub
try:
    from transformers import GPT2Tokenizer
    from huggingface_hub import hf_hub_download, snapshot_download
    HF_AVAILABLE = True
except ImportError:
    HF_AVAILABLE = False
    print("Required libraries not available.")
    print("Install with: pip install transformers huggingface-hub")
    sys.exit(1)

# Required for safetensors
try:
    from safetensors.torch import load_file
    SAFETENSORS_AVAILABLE = True
except ImportError:
    SAFETENSORS_AVAILABLE = False
    print("Safetensors not available. Install with: pip install safetensors")
    sys.exit(1)

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

# Default model repository
DEFAULT_MODEL_REPO = "MistyozAI/CosmicFish-90M"

# Default prompt template
DEFAULT_PROMPT_TEMPLATE = "Below is a conversation between a helpful AI assistant and a human. The assistant is knowledgeable, friendly, and provides detailed and accurate responses.\n\n"


class CosmicConfig:
    """Configuration class for CosmicFish."""

    def __init__(self,
                 vocab_size=50257,
                 block_size=512,
                 n_layer=10,
                 n_head=16,
                 n_embd=640,
                 bias=True,
                 dropout=0.0,
                 n_query_groups=4,
                 eps=1e-6,
                 use_rotary=True,
                 use_swiglu=True,
                 use_qk_norm=False,
                 use_gqa=True):
        self.vocab_size = vocab_size
        self.block_size = block_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_embd = n_embd
        self.bias = bias
        self.dropout = dropout
        self.eps = eps
        self.use_rotary = use_rotary
        self.use_swiglu = use_swiglu
        self.use_qk_norm = use_qk_norm
        self.use_gqa = use_gqa
        self.n_query_groups = n_query_groups if use_gqa else n_head
        # Ensure n_head is divisible by n_query_groups
        assert n_head % self.n_query_groups == 0, "n_head must be divisible by n_query_groups"


class RMSNorm(torch.nn.Module):
    """Root Mean Square Normalization"""

    def __init__(self, dim, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.ones(dim))

    def forward(self, x):
        rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
        return self.weight * (x / rms)


def precompute_freqs_cis(dim, end, theta=10000.0):
    """Precompute the frequency tensor for complex exponentials (cis)"""
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    return freqs_cis


def apply_rotary_emb(xq, xk, freqs_cis):
    """Apply rotary embeddings to input tensors"""
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))

    seq_len = xq_.size(2)
    if freqs_cis.size(0) < seq_len:
        raise ValueError(f"freqs_cis has only {freqs_cis.size(0)} values but sequence length is {seq_len}")

    freqs_cis_seq = freqs_cis[:seq_len]
    xq_out = torch.view_as_real(xq_ * freqs_cis_seq.unsqueeze(0)).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis_seq.unsqueeze(0)).flatten(3)

    return xq_out.type_as(xq), xk_out.type_as(xk)


class GroupedQueryAttention(torch.nn.Module):
    """Grouped Query Attention (GQA) implementation"""

    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0

        head_dim = config.n_embd // config.n_head
        self.head_dim = head_dim
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.n_query_groups = config.n_query_groups

        self.kv_heads = config.n_head // config.n_query_groups if config.use_gqa else config.n_head
        qkv_proj_size = (config.n_head + 2 * self.kv_heads) * head_dim

        self.c_attn = torch.nn.Linear(config.n_embd, qkv_proj_size, bias=config.bias)
        self.c_proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=config.bias)

        # Flash attention support
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
        if not self.flash:
            self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                 .view(1, 1, config.block_size, config.block_size))

        # Query-key normalization
        self.qk_norm = getattr(config, 'use_qk_norm', False)
        if self.qk_norm:
            self.q_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6))
            self.k_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6))

    def forward(self, x, freqs_cis=None):
        B, T, C = x.size()
        qkv = self.c_attn(x)
        head_dim = C // self.n_head

        q_size = self.n_head * head_dim
        k_size = self.kv_heads * head_dim
        v_size = self.kv_heads * head_dim

        q, k, v = qkv.split([q_size, k_size, v_size], dim=2)

        q = q.view(B, T, self.n_head, head_dim).transpose(1, 2)
        k = k.view(B, T, self.kv_heads, head_dim).transpose(1, 2)
        v = v.view(B, T, self.kv_heads, head_dim).transpose(1, 2)

        # Repeat k and v if needed for GQA
        if self.kv_heads < self.n_head:
            repeats = self.n_head // self.kv_heads
            k = k.repeat_interleave(repeats, dim=1)
            v = v.repeat_interleave(repeats, dim=1)

        # Apply rotary embeddings
        if freqs_cis is not None:
            q, k = apply_rotary_emb(q, k, freqs_cis)

        # Apply query-key normalization
        if self.qk_norm:
            q = self.q_norm(q)
            k = self.k_norm(k)

        # Compute attention
        if self.flash:
            y = torch.nn.functional.scaled_dot_product_attention(
                q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True
            )
        else:
            att = (q @ k.transpose(-2, -1)) * (1.0 / torch.sqrt(torch.tensor(k.size(-1), dtype=torch.float32)))
            att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
            att = torch.nn.functional.softmax(att, dim=-1)
            y = att @ v

        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.c_proj(y)
        return y


class Block(torch.nn.Module):
    """Transformer block"""

    def __init__(self, config):
        super().__init__()
        self.ln_1 = RMSNorm(config.n_embd, eps=config.eps)
        self.ln_2 = RMSNorm(config.n_embd, eps=config.eps)
        self.attn = GroupedQueryAttention(config)

        # MLP implementation based on configuration
        if config.use_swiglu:
            # SwiGLU MLP
            self.mlp = torch.nn.ModuleDict(dict(
                gate=torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
                up=torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
                down=torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias),
                act=torch.nn.SiLU(),
            ))
            m = self.mlp
            self.mlpf = lambda x: m.down(m.act(m.up(x)) * m.gate(x))
        else:
            # Traditional MLP
            self.mlp = torch.nn.ModuleDict(dict(
                c_fc=torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
                c_proj=torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias),
                act=torch.nn.GELU(),
            ))
            m = self.mlp
            self.mlpf = lambda x: m.c_proj(m.act(m.c_fc(x)))

    def forward(self, x, freqs_cis=None):
        x = x + self.attn(self.ln_1(x), freqs_cis)
        x = x + self.mlpf(self.ln_2(x))
        return x


class CosmicFish(torch.nn.Module):
    """
    CosmicFish model for inference only.
    Features: Rotary Positional Embeddings, Grouped-Query Attention, SwiGLU, RMSNorm
    """

    def __init__(self, config):
        super().__init__()
        self.config = config

        self.transformer = torch.nn.ModuleDict(dict(
            wte=torch.nn.Embedding(config.vocab_size, config.n_embd),
            h=torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f=RMSNorm(config.n_embd, eps=config.eps),
        ))

        self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Share weights between embedding and output
        self.transformer.wte.weight = self.lm_head.weight

        # Precompute rotary embedding frequencies
        if config.use_rotary:
            head_dim = config.n_embd // config.n_head
            self.freqs_cis = precompute_freqs_cis(head_dim, config.block_size)
        else:
            self.freqs_cis = None
            self.transformer.wpe = torch.nn.Embedding(config.block_size, config.n_embd)

    def get_num_params(self, non_embedding=True):
        """Return the number of parameters in the model."""
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding and hasattr(self.transformer, 'wpe'):
            n_params -= self.transformer.wpe.weight.numel()
        return n_params

    def forward(self, idx, targets=None):
        """Forward pass through the model."""
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"

        # Get token embeddings
        tok_emb = self.transformer.wte(idx)

        # Handle positional embeddings
        if self.config.use_rotary:
            x = tok_emb
            freqs_cis = self.freqs_cis.to(device) if self.freqs_cis is not None else None
        else:
            pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
            pos_emb = self.transformer.wpe(pos)
            x = tok_emb + pos_emb
            freqs_cis = None

        # Apply transformer blocks
        for block in self.transformer.h:
            x = block(x, freqs_cis)

        # Apply final normalization
        x = self.transformer.ln_f(x)

        # Calculate outputs
        if targets is not None:
            logits = self.lm_head(x)
            loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # For inference, only compute logits for the last token
            logits = self.lm_head(x[:, [-1], :])
            loss = None

        return logits, loss

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """
        Generate text by sampling from the model, token by token.
        """
        for _ in range(max_new_tokens):
            # Crop sequence to block size if needed
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]

            # Forward pass
            logits, _ = self(idx_cond)
            logits = logits[:, -1, :] / temperature

            # Apply top-k sampling
            if top_k is not None:
                v, _ = torch.topk(logits, top_k)
                logits[logits < v[:, [-1]]] = -float('Inf')

            # Sample next token
            probs = torch.nn.functional.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)

            # Append to sequence
            idx = torch.cat((idx, idx_next), dim=1)

        return idx


class RepetitionPenaltyLogitsProcessor:
    """Apply repetition penalty to prevent repeating tokens."""

    def __init__(self, penalty=1.2):
        self.penalty = penalty

    def __call__(self, input_ids, scores):
        """Apply repetition penalty to logits where input_ids is already seen."""
        score = torch.gather(scores, 1, input_ids)
        # If score > 0, penalize by dividing; if score < 0, penalize by multiplying
        score = torch.where(score > 0, score / self.penalty, score * self.penalty)
        scores.scatter_(1, input_ids, score)
        return scores


class CosmicFishChatSession:
    """Chat session for CosmicFish model from Hugging Face Hub."""

    def __init__(self, model, tokenizer, config):
        """Initialize chat session with model and configuration."""
        self.model = model
        self.tokenizer = tokenizer
        self.config = config
        self.device = next(model.parameters()).device
        self.history = []
        self.history_tokens = []
        self.max_history_tokens = config.max_history_tokens
        self.prompt_template = config.prompt_template
        self.human_prefix = config.human_prefix
        self.assistant_prefix = config.assistant_prefix
        self.end_of_turn = config.end_of_turn
        self.block_size = config.block_size
        self.debug_mode = config.debug_mode
        self.repetition_penalty = config.repetition_penalty
        self.min_tokens_to_generate = config.min_tokens_to_generate
        self.max_retries = 20

        self.fallback_responses = [
            "I'd be happy to help with that. Could you provide more details about what specific information you're looking for?",
            "That's a topic I can provide information about. What specific aspects would you like to know?",
            "I understand your question. I can share factual information on this topic if you could specify what aspects you're interested in.",
            "I can help with your question. To give you the most relevant information, could you clarify what specific details you're looking for?",
            "I'd be glad to address your question. To provide the most helpful response, could you specify what particular aspects of this topic interest you?"
        ]

        self.generation_failure_message = "I'm sorry, but I'm having difficulty generating a response to that prompt. Could you try rephrasing your question or asking something else?"

        # For token counting
        self.total_prompt_tokens = 0
        self.total_generated_tokens = 0

        # End markers for live generation
        self.end_markers = [
            f"{self.human_prefix}",
            "Human:",
            "\nHuman:",
            "\nH:",
            "H:",
            "<|endoftext|>",
            "Below is a conversation",
            "\nA:",
            "A:",
            "</s>",
            "User:",
            "\nUser:"
        ]

        if config.display_welcome:
            self._print_welcome_message()

    def _print_welcome_message(self):
        welcome_text = f"""
{'=' * 80}
Welcome to CosmicFish chat interface

This is a {self.model.get_num_params() / 1e6:.1f}M parameter model.
CosmicFish is an efficient LLM with an advanced architecture.

Type your prompts and CosmicFish will respond.

Special commands:
- /help: Show this help message
- /clear: Clear the conversation history
- /exit or /quit: Exit the chat
- /stats: Show token usage statistics
- /save [filename]: Save the conversation
- /load [filename]: Load a conversation
- /temp [value]: Set temperature (between 0.1 and 2.0)
- /penalty [value]: Set repetition penalty (1.0-2.0)
- /debug: Toggle debug mode


Note: CosmicFIsh may generate incorrect or fictional responses. Verify facts if needed.

Visit https://cosmicfish.ai for more info


Developed by Mistyoz AI (https://www.mistyoz.com)
{'=' * 80}
"""
        print(colored(welcome_text, 'cyan'))

    def _format_prompt(self, user_input):
        """Format the complete prompt with history and current input."""
        # Start with the template
        formatted_prompt = self.prompt_template

        # Add conversation history
        for entry in self.history:
            role, text = entry
            if role == "human":
                formatted_prompt += f"{self.human_prefix}{text}{self.end_of_turn}"
            else:  # assistant
                formatted_prompt += f"{self.assistant_prefix}{text}{self.end_of_turn}"

        # Add the current user input
        formatted_prompt += f"{self.human_prefix}{user_input}{self.end_of_turn}{self.assistant_prefix}"

        return formatted_prompt

    def _tokenize(self, text):
        """Tokenize text and return token IDs."""
        return self.tokenizer.encode(text)

    def _update_history(self, user_input, response):
        """Update conversation history."""
        # Add to text history
        self.history.append(("human", user_input))
        self.history.append(("assistant", response))

        # Update token history for context window management
        user_tokens = self._tokenize(f"{self.human_prefix}{user_input}{self.end_of_turn}")
        response_tokens = self._tokenize(f"{self.assistant_prefix}{response}{self.end_of_turn}")

        self.history_tokens.extend(user_tokens)
        self.history_tokens.extend(response_tokens)

        # Track token usage
        self.total_prompt_tokens += len(user_tokens)
        self.total_generated_tokens += len(response_tokens)

        # Trim history if it gets too long
        self._trim_history_if_needed()

    def _trim_history_if_needed(self):
        """Trim history to fit within the context window."""
        if len(self.history_tokens) > self.max_history_tokens:
            # Remove oldest turns until we're under the limit
            while len(self.history_tokens) > self.max_history_tokens and len(self.history) >= 2:
                # Remove oldest human and assistant turn
                self.history = self.history[2:]

                # Find token boundary for the removed turns
                user_turn = self.history[0][1]
                assistant_turn = self.history[1][1]
                user_tokens = len(self._tokenize(f"{self.human_prefix}{user_turn}{self.end_of_turn}"))
                assistant_tokens = len(self._tokenize(f"{self.assistant_prefix}{assistant_turn}{self.end_of_turn}"))

                # Update token history
                self.history_tokens = self.history_tokens[user_tokens + assistant_tokens:]

    def _should_stop_generation(self, text):
        """Check if generation should stop based on end markers."""
        for marker in self.end_markers:
            if marker in text:
                return True
        return False

    def _clean_token_text(self, text):
        text = text.replace('��', "'")
        text = text.replace('�', "'")
        text = text.replace('\ufffd', "'")
        text = text.replace('\uFFFD', "'")
        text = text.replace('’', "'")
        text = text.replace('â€Å"', "'")
        text = text.replace('�', "'")
        text = text.replace('â€"', "'")
        text = text.replace('â€"', "'")
        return text

    def generate_with_repetition_penalty(self, input_ids, max_new_tokens, temperature, top_k, penalty=1.2, live=False):
        """Custom generate function with repetition penalty and optional live generation."""
        model = self.model
        device = self.device

        # Ensure model is in eval mode
        model.eval()

        # Initialize sequence with input_ids
        generated = input_ids.clone()

        # Initialize live text buffer
        live_buffer = ""

        # Create repetition penalty processor
        rep_processor = RepetitionPenaltyLogitsProcessor(penalty=penalty)

        # Counter for generated tokens
        tokens_generated = 0
        min_tokens = self.min_tokens_to_generate

        # EOT token ID
        eot_token_id = self.tokenizer.eos_token_id if hasattr(self.tokenizer, 'eos_token_id') else 50256

        # Generate tokens one at a time
        for _ in range(max_new_tokens):
            # Get only the last block_size tokens if context is too long
            if generated.size(1) > self.block_size:
                context = generated[:, -self.block_size:]
            else:
                context = generated

            # Forward pass for next token prediction
            with torch.no_grad():
                logits, _ = model(context)

            # Get logits for the next token (last position)
            next_token_logits = logits[:, -1, :]

            # Apply temperature
            next_token_logits = next_token_logits / temperature

            # Apply repetition penalty
            if penalty > 1.0:
                next_token_logits = rep_processor(context, next_token_logits)

            # Optional top-k sampling
            if top_k is not None:
                indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
                next_token_logits[indices_to_remove] = float('-inf')

            # Convert logits to probabilities
            probs = torch.nn.functional.softmax(next_token_logits, dim=-1)

            # Sample next token
            next_token = torch.multinomial(probs, num_samples=1)

            # Check if the next token is EOT and break immediately if so
            if next_token.item() == eot_token_id:
                if live:
                    yield "", live_buffer, True
                break

            # Append next token to generated sequence
            generated = torch.cat((generated, next_token), dim=1)
            tokens_generated += 1

            # If live generation, decode and yield the token
            if live:
                # Decode the next token
                next_token_text = self.tokenizer.decode([next_token.item()])
                # Clean the token text to fix encoding issues
                next_token_text = self._clean_token_text(next_token_text)
                live_buffer += next_token_text

                # Check if we've hit an end marker in the buffer
                eot_marker_pos = live_buffer.find("<|endoftext|>")
                if eot_marker_pos != -1:
                    # Cut off at the EOT marker
                    live_buffer = live_buffer[:eot_marker_pos]
                    yield "", live_buffer, True
                    break

                # Check other end markers
                should_stop = tokens_generated >= min_tokens and self._should_stop_generation(live_buffer)
                yield next_token_text, live_buffer, should_stop

                if should_stop:
                    break

            # For non-live generation, check if we should stop
            elif tokens_generated >= min_tokens:
                # Check for end markers in the recent generated tokens
                recent_text = self.tokenizer.decode(generated[0, -20:].tolist())
                if self._should_stop_generation(recent_text):
                    break

        # Check if we generated any tokens at all
        if tokens_generated == 0 and not live:
            if self.debug_mode:
                print(colored("\n[No tokens generated in this attempt]", "red"))
            return None

        if not live:
            return generated

    def generate_response(self, user_input):
        """Generate a response to the user input."""
        # Format the complete prompt
        prompt = self._format_prompt(user_input)

        # Tokenize the prompt
        input_ids = torch.tensor(self._tokenize(prompt), dtype=torch.long).unsqueeze(0).to(self.device)

        # Ensure we don't exceed the model's context length
        if input_ids.size(1) > self.block_size:
            # If too long, keep the beginning part with the instruction template and trim the middle
            instruction_tokens = self._tokenize(self.prompt_template)
            # Keep the instruction and the most recent conversation that will fit
            keep_from_beginning = len(instruction_tokens)
            keep_from_end = self.block_size - keep_from_beginning

            # Combine beginning and end, ensuring we don't exceed array bounds
            if keep_from_end < 0:
                # If instruction alone is too long, trim it (shouldn't happen with reasonable templates)
                input_ids = input_ids[:, :self.block_size]
            else:
                # Keep instruction and most recent conversation
                input_ids = torch.cat([
                    input_ids[:, :keep_from_beginning],
                    input_ids[:, -(keep_from_end):]
                ], dim=1)

        # Track generation start time
        start_time = time.time()

        # Always use live generation
        return self._generate_live_response(input_ids, user_input, start_time)

    def _generate_live_response(self, input_ids, user_input, start_time):
        """Generate response with live token-by-token output."""
        # Initialize for live generation
        live_text = ""
        tokens_generated = 0
        retry_count = 0

        # Keep trying until we get a valid response or exhaust retries
        while retry_count <= self.max_retries:
            if retry_count > 0:
                # Calculate temperature for this retry
                if retry_count % 2 == 0:
                    # Even retries: increase temperature
                    temp_adjustment = min(0.2 * (retry_count // 2), 0.8)
                    current_temp = min(self.config.temperature + temp_adjustment, 1.8)
                else:
                    # Odd retries: decrease temperature
                    temp_adjustment = min(0.2 * ((retry_count + 1) // 2), 0.4)
                    current_temp = max(self.config.temperature - temp_adjustment, 0.2)

                if self.debug_mode:
                    print(colored(f"\n[Live retry {retry_count}: Using temperature {current_temp:.2f}]", "yellow"))
            else:
                current_temp = self.config.temperature

            # Reset for this attempt
            live_text = ""
            tokens_generated = 0
            generation_failed = False

            # Try to generate with current settings
            try:
                # Generate with live output
                for token_text, live_buffer, should_stop in self.generate_with_repetition_penalty(
                        input_ids,
                        max_new_tokens=self.config.max_new_tokens,
                        temperature=current_temp,
                        top_k=self.config.top_k,
                        penalty=self.repetition_penalty,
                        live=True
                ):
                    # If we should stop but there's a token, this is the last one
                    if should_stop:
                        # Update with the final clean buffer (will have EOT removed if present)
                        live_text = live_buffer
                        break

                    # Otherwise add the token and continue
                    if token_text:
                        live_text += token_text
                        tokens_generated += 1
                        yield token_text, live_text, False

                # Check if we got a valid response
                if not live_text or len(live_text.strip()) < 10:
                    if self.debug_mode:
                        print(colored("\n[Live generation produced empty or too short response, retrying]", "yellow"))
                    generation_failed = True
                    retry_count += 1
                    # Clear any partial output
                    if retry_count <= self.max_retries:
                        print("\r" + " " * 80 + "\r", end="")  # Clear the line
                else:
                    # We got a valid response, stop retrying
                    break

            except Exception as e:
                if self.debug_mode:
                    print(colored(f"\n[Live generation error: {str(e)}, retrying]", "red"))
                generation_failed = True
                retry_count += 1

        # If we still failed after all retries, use the failure message
        if generation_failed or not live_text or len(live_text.strip()) < 10:
            live_text = self.generation_failure_message
            if self.debug_mode:
                print(colored(f"\n[Returning failure message after {retry_count} live retries]", "red"))

        # Calculate time taken and metrics
        time_taken = time.time() - start_time
        tokens_per_second = tokens_generated / time_taken if time_taken > 0 else 0

        # Update history
        self._update_history(user_input, live_text)

        # Log generation stats
        logger.debug(f"Generated {tokens_generated} tokens in {time_taken:.2f}s ({tokens_per_second:.2f} tokens/s)")

        # Final yield of the complete response
        yield "", live_text, True

    def execute_command(self, command):
        """Execute a special command prefixed with /."""
        command = command.strip()

        if command == '/help':
            self._print_welcome_message()
            return True

        elif command == '/clear':
            self.history = []
            self.history_tokens = []
            print(colored("Conversation history cleared.", 'yellow'))
            return True

        elif command in ['/exit', '/quit']:
            print(colored("Goodbye!", 'cyan'))
            return False  # Signal to exit the chat loop

        elif command == '/stats':
            prompt_tokens = self.total_prompt_tokens
            generated_tokens = self.total_generated_tokens
            total_tokens = prompt_tokens + generated_tokens

            stats = f"""
Token usage statistics:
- Prompt tokens: {prompt_tokens}
- Generated tokens: {generated_tokens}
- Total tokens: {total_tokens}
- Current history length: {len(self.history_tokens)} tokens
- Current repetition penalty: {self.repetition_penalty}
- Current temperature: {self.config.temperature}
- Model: CosmicFish ({self.model.get_num_params() / 1e6:.1f}M parameters)
- Source: {DEFAULT_MODEL_REPO}
- Format: Safetensors (secure)
"""
            print(colored(stats, 'yellow'))
            return True

        elif command == '/debug':
            self.debug_mode = not self.debug_mode
            self.config.debug_mode = self.debug_mode  # Sync with config
            mode = "enabled" if self.debug_mode else "disabled"
            print(colored(f"Debug mode {mode}", 'yellow'))
            return True

        elif command.startswith('/penalty '):
            try:
                penalty = float(command[9:].strip())
                if 1.0 <= penalty <= 2.0:
                    self.repetition_penalty = penalty
                    print(colored(f"Repetition penalty set to {penalty}", 'yellow'))
                else:
                    print(colored("Repetition penalty should be between 1.0 and 2.0", 'red'))
            except ValueError:
                print(colored("Invalid repetition penalty value. Please use a number between 1.0 and 2.0", 'red'))
            return True

        elif command.startswith('/temp '):
            try:
                temp = float(command[6:].strip())
                if 0.1 <= temp <= 2.0:
                    self.config.temperature = temp
                    print(colored(f"Temperature set to {temp}", 'yellow'))
                else:
                    print(colored("Temperature should be between 0.1 and 2.0", 'red'))
            except ValueError:
                print(colored("Invalid temperature value. Please use a number between 0.1 and 2.0", 'red'))
            return True

        elif command.startswith('/save '):
            filename = command[6:].strip()
            if not filename:
                print(colored("Please specify a filename: /save <filename>", 'red'))
                return True

            try:
                # Create conversations directory if it doesn't exist
                os.makedirs('conversations', exist_ok=True)

                # Add .txt extension if not present
                if not filename.endswith('.txt'):
                    filename += '.txt'

                filepath = os.path.join('conversations', filename)

                with open(filepath, 'w', encoding='utf-8') as f:
                    for entry in self.history:
                        role, text = entry
                        prefix = self.human_prefix if role == "human" else self.assistant_prefix
                        f.write(f"{prefix}{text}{self.end_of_turn}")

                print(colored(f"Conversation saved to {filepath}", 'green'))

            except Exception as e:
                print(colored(f"Error saving conversation: {str(e)}", 'red'))

            return True

        elif command.startswith('/load '):
            filename = command[6:].strip()
            if not filename:
                print(colored("Please specify a filename: /load <filename>", 'red'))
                return True

            try:
                # Add .txt extension if not present
                if not filename.endswith('.txt'):
                    filename += '.txt'

                filepath = os.path.join('conversations', filename)

                if not os.path.exists(filepath):
                    print(colored(f"File not found: {filepath}", 'red'))
                    return True

                with open(filepath, 'r', encoding='utf-8') as f:
                    content = f.read()

                # Parse conversation turns
                self.history = []
                self.history_tokens = []

                # Split by end of turn marker
                turns = content.split(self.end_of_turn)
                for turn in turns:
                    turn = turn.strip()
                    if not turn:
                        continue

                    if turn.startswith(self.human_prefix):
                        text = turn[len(self.human_prefix):].strip()
                        self.history.append(("human", text))
                    elif turn.startswith(self.assistant_prefix):
                        text = turn[len(self.assistant_prefix):].strip()
                        self.history.append(("assistant", text))

                # Recalculate token counts
                self.history_tokens = []
                for entry in self.history:
                    role, text = entry
                    if role == "human":
                        self.history_tokens.extend(self._tokenize(f"{self.human_prefix}{text}{self.end_of_turn}"))
                    else:
                        self.history_tokens.extend(self._tokenize(f"{self.assistant_prefix}{text}{self.end_of_turn}"))

                print(colored(f"Loaded conversation from {filepath} ({len(self.history) // 2} turns)", 'green'))

                # Print the conversation
                for i in range(0, len(self.history), 2):
                    if i < len(self.history):
                        user_text = self.history[i][1]
                        print(colored(f"\nYou: {user_text}", 'green'))

                    if i + 1 < len(self.history):
                        assistant_text = self.history[i + 1][1]
                        print(colored("CosmicFish: ", 'blue'), end="")
                        for line in assistant_text.split('\n'):
                            wrapped_lines = textwrap.wrap(line, width=100) if line.strip() else ['']
                            for wrapped_line in wrapped_lines:
                                print(wrapped_line)

            except Exception as e:
                print(colored(f"Error loading conversation: {str(e)}", 'red'))

            return True

        else:
            print(colored(f"Unknown command: {command}. Type /help for available commands.", 'red'))
            return True


def download_cosmicfish_from_hub(model_repo=DEFAULT_MODEL_REPO, device='cpu'):
    """Download and load CosmicFish model from Hugging Face Hub (safetensors only)"""
    print(colored(f"Downloading CosmicFish from Hugging Face: {model_repo}", "cyan"))

    try:
        # Download the model files to local cache
        print("Downloading model files...")
        cache_dir = snapshot_download(repo_id=model_repo, cache_dir=None)
        print(f"Model cached at: {cache_dir}")

        # Load config
        config_path = os.path.join(cache_dir, "config.json")
        with open(config_path, "r") as f:
            config_dict = json.load(f)

        # Create CosmicConfig
        config = CosmicConfig(
            vocab_size=config_dict["vocab_size"],
            block_size=config_dict["block_size"],
            n_layer=config_dict["n_layer"],
            n_head=config_dict["n_head"],
            n_embd=config_dict["n_embd"],
            bias=config_dict["bias"],
            dropout=0.0,  # Set to 0 for inference
            eps=config_dict.get("eps", 1e-6),
            use_rotary=config_dict["use_rotary"],
            use_swiglu=config_dict["use_swiglu"],
            use_gqa=config_dict["use_gqa"],
            n_query_groups=config_dict["n_query_groups"],
            use_qk_norm=config_dict.get("use_qk_norm", False)
        )

        # Create model
        print("Creating model...")
        model = CosmicFish(config)

        # Load weights from safetensors ONLY
        print("Loading weights from safetensors...")
        safetensors_path = os.path.join(cache_dir, "model.safetensors")

        if not os.path.exists(safetensors_path):
            raise FileNotFoundError(f"model.safetensors not found in {cache_dir}. This model requires safetensors format.")

        state_dict = load_file(safetensors_path)

        # Handle weight sharing: lm_head.weight shares with transformer.wte.weight
        if 'lm_head.weight' not in state_dict and 'transformer.wte.weight' in state_dict:
            state_dict['lm_head.weight'] = state_dict['transformer.wte.weight']

        model.load_state_dict(state_dict)
        model.to(device)
        model.eval()

        print(f"Model loaded: {model.get_num_params() / 1e6:.1f}M parameters")
        print(f"Device: {device}")
        return model, config

    except Exception as e:
        print(colored(f"Error downloading/loading model: {str(e)}", "red"))
        print(colored("Make sure you have internet connection and the model repo exists", "yellow"))
        sys.exit(1)


def load_tokenizer():
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
    return tokenizer


def main():
    parser = argparse.ArgumentParser(description="Chat with CosmicFish")

    # Model parameters
    parser.add_argument("--model_repo", type=str, default=DEFAULT_MODEL_REPO,
                        help=f"Hugging Face model repository (default: {DEFAULT_MODEL_REPO})")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
                        help="Device to use (cuda or cpu)")

    # Generation parameters
    parser.add_argument("--temperature", type=float, default=0.5,
                        help="Temperature for sampling (default: 0.7)")
    parser.add_argument("--max_tokens", type=int, default=512,
                        help="Maximum number of tokens to generate per response")
    parser.add_argument("--min_tokens", type=int, default=10,
                        help="Minimum number of tokens to generate per response")
    parser.add_argument("--top_k", type=int, default=40,
                        help="Top-k sampling (0 to disable)")
    parser.add_argument("--repetition_penalty", type=float, default=1.2,
                        help="Repetition penalty (1.0 = no penalty, 1.2 = mild, 1.5 = moderate)")

    # Chat parameters
    parser.add_argument("--human_prefix", type=str, default="Human: ",
                        help="Prefix for human messages")
    parser.add_argument("--assistant_prefix", type=str, default="Assistant: ",
                        help="Prefix for assistant messages")
    parser.add_argument("--end_of_turn", type=str, default="\n\n",
                        help="Delimiter between conversation turns")
    parser.add_argument("--instruction", type=str,
                        default=DEFAULT_PROMPT_TEMPLATE,
                        help="Instruction prompt to prepend to the conversation")
    parser.add_argument("--max_history", type=int, default=512,
                        help="Maximum number of tokens to keep in history")

    # UI parameters
    parser.add_argument("--no_welcome", action="store_true",
                        help="Don't display the welcome message")
    parser.add_argument("--debug", action="store_true",
                        help="Enable debug mode")

    args = parser.parse_args()

    # Configure device
    device = args.device
    if device == "cuda" and not torch.cuda.is_available():
        print(colored("CUDA is not available, falling back to CPU", "yellow"))
        device = "cpu"

    try:
        # Download and load the model from HF Hub
        model, model_config = download_cosmicfish_from_hub(args.model_repo, device)

        # Load tokenizer
        tokenizer = load_tokenizer()

        # Create a config object with all the necessary parameters
        class ChatConfig:
            def __init__(self, args, block_size):
                self.device = device
                self.temperature = args.temperature
                self.max_new_tokens = args.max_tokens
                self.min_tokens_to_generate = args.min_tokens
                self.top_k = args.top_k
                self.human_prefix = args.human_prefix
                self.assistant_prefix = args.assistant_prefix
                self.end_of_turn = args.end_of_turn
                self.prompt_template = args.instruction
                self.max_history_tokens = args.max_history
                self.display_welcome = not args.no_welcome
                self.block_size = block_size
                self.debug_mode = args.debug
                self.repetition_penalty = args.repetition_penalty

        config = ChatConfig(args, model_config.block_size)

        # Initialize chat session
        chat = CosmicFishChatSession(model, tokenizer, config)

        # Main chat loop
        print(colored("\nCosmicFish initialized from Hugging Face! Type your message (or /help for commands).\n", 'cyan'))

        while True:
            try:
                # Get user input
                user_input = input(colored("You: ", 'green'))

                # Check if it's a command
                if user_input.startswith('/'):
                    # Execute command, continue loop if True, exit if False
                    if not chat.execute_command(user_input):
                        break
                    continue

                # Skip if empty input
                if not user_input.strip():
                    continue

                # Generate response using live generation
                live_buffer = ""
                final_response = None

                # Use the generator version
                response_generator = chat.generate_response(user_input)

                try:
                    # First print the assistant prefix
                    print(colored("CosmicFish: ", 'blue'), end="")
                    sys.stdout.flush()

                    for token, live_text, is_done in response_generator:
                        # If this is the final clean response
                        if is_done:
                            final_response = live_text
                            # Print the final response directly if we didn't get any tokens yet
                            if not live_buffer:
                                print(final_response, end="")
                            break
                        if token:
                            # Check if token contains <|endoftext|> and remove it if present
                            if "<|endoftext|>" in token:
                                token = token.replace("<|endoftext|>", "")
                                if token:  # Only print if there's anything left
                                    print(token, end="", flush=True)
                                break

                            # Display it
                            print(token, end="", flush=True)
                            live_buffer += token

                except KeyboardInterrupt:
                    # Allow user to interrupt generation
                    print("\n[Generation interrupted]")
                    final_response = "I was going to respond, but I'll stop here since you interrupted."

                # Add an extra line for readability
                print()

            except KeyboardInterrupt:
                print("\n\nKeyboard interrupt detected. Type /exit to quit or continue chatting.")

            except Exception as e:
                print(colored(f"\nError: {str(e)}", 'red'))
                logger.error(f"Error in chat loop: {str(e)}", exc_info=True)

    except Exception as e:
        print(colored(f"Error setting up chat: {str(e)}", 'red'))
        logger.error(f"Error setting up chat: {str(e)}", exc_info=True)
        sys.exit(1)


if __name__ == "__main__":
    try:
        main()
    except Exception as e:
        logger.error(f"Fatal error: {str(e)}", exc_info=True)
        sys.exit(1)