Delete chat.py
Browse files
chat.py
DELETED
@@ -1,1130 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import time
|
4 |
-
import argparse
|
5 |
-
import torch
|
6 |
-
import numpy as np
|
7 |
-
from termcolor import colored
|
8 |
-
import logging
|
9 |
-
import readline
|
10 |
-
import re
|
11 |
-
import textwrap
|
12 |
-
import random
|
13 |
-
from collections import defaultdict
|
14 |
-
import json
|
15 |
-
|
16 |
-
# Required imports for HF Hub
|
17 |
-
try:
|
18 |
-
from transformers import GPT2Tokenizer
|
19 |
-
from huggingface_hub import hf_hub_download, snapshot_download
|
20 |
-
HF_AVAILABLE = True
|
21 |
-
except ImportError:
|
22 |
-
HF_AVAILABLE = False
|
23 |
-
print("Required libraries not available.")
|
24 |
-
print("Install with: pip install transformers huggingface-hub")
|
25 |
-
sys.exit(1)
|
26 |
-
|
27 |
-
# Set up logging
|
28 |
-
logging.basicConfig(
|
29 |
-
level=logging.INFO,
|
30 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
31 |
-
handlers=[logging.StreamHandler(sys.stdout)]
|
32 |
-
)
|
33 |
-
logger = logging.getLogger(__name__)
|
34 |
-
|
35 |
-
# Default model repository
|
36 |
-
DEFAULT_MODEL_REPO = "MistyozAI/CosmicFish-90M"
|
37 |
-
|
38 |
-
# Default prompt template
|
39 |
-
DEFAULT_PROMPT_TEMPLATE = "Below is a conversation between a helpful AI assistant and a human. The assistant is knowledgeable, friendly, and provides detailed and accurate responses.\n\n"
|
40 |
-
|
41 |
-
|
42 |
-
class CosmicConfig:
|
43 |
-
"""Configuration class for CosmicFish."""
|
44 |
-
|
45 |
-
def __init__(self,
|
46 |
-
vocab_size=50257,
|
47 |
-
block_size=512,
|
48 |
-
n_layer=10,
|
49 |
-
n_head=16,
|
50 |
-
n_embd=640,
|
51 |
-
bias=True,
|
52 |
-
dropout=0.0,
|
53 |
-
n_query_groups=4,
|
54 |
-
eps=1e-6,
|
55 |
-
use_rotary=True,
|
56 |
-
use_swiglu=True,
|
57 |
-
use_qk_norm=False,
|
58 |
-
use_gqa=True):
|
59 |
-
self.vocab_size = vocab_size
|
60 |
-
self.block_size = block_size
|
61 |
-
self.n_layer = n_layer
|
62 |
-
self.n_head = n_head
|
63 |
-
self.n_embd = n_embd
|
64 |
-
self.bias = bias
|
65 |
-
self.dropout = dropout
|
66 |
-
self.eps = eps
|
67 |
-
self.use_rotary = use_rotary
|
68 |
-
self.use_swiglu = use_swiglu
|
69 |
-
self.use_qk_norm = use_qk_norm
|
70 |
-
self.use_gqa = use_gqa
|
71 |
-
self.n_query_groups = n_query_groups if use_gqa else n_head
|
72 |
-
# Ensure n_head is divisible by n_query_groups
|
73 |
-
assert n_head % self.n_query_groups == 0, "n_head must be divisible by n_query_groups"
|
74 |
-
|
75 |
-
|
76 |
-
class RMSNorm(torch.nn.Module):
|
77 |
-
"""Root Mean Square Normalization"""
|
78 |
-
|
79 |
-
def __init__(self, dim, eps=1e-6):
|
80 |
-
super().__init__()
|
81 |
-
self.eps = eps
|
82 |
-
self.weight = torch.nn.Parameter(torch.ones(dim))
|
83 |
-
|
84 |
-
def forward(self, x):
|
85 |
-
rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
86 |
-
return self.weight * (x / rms)
|
87 |
-
|
88 |
-
|
89 |
-
def precompute_freqs_cis(dim, end, theta=10000.0):
|
90 |
-
"""Precompute the frequency tensor for complex exponentials (cis)"""
|
91 |
-
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
92 |
-
t = torch.arange(end, device=freqs.device)
|
93 |
-
freqs = torch.outer(t, freqs)
|
94 |
-
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
95 |
-
return freqs_cis
|
96 |
-
|
97 |
-
|
98 |
-
def apply_rotary_emb(xq, xk, freqs_cis):
|
99 |
-
"""Apply rotary embeddings to input tensors"""
|
100 |
-
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
101 |
-
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
102 |
-
|
103 |
-
seq_len = xq_.size(2)
|
104 |
-
if freqs_cis.size(0) < seq_len:
|
105 |
-
raise ValueError(f"freqs_cis has only {freqs_cis.size(0)} values but sequence length is {seq_len}")
|
106 |
-
|
107 |
-
freqs_cis_seq = freqs_cis[:seq_len]
|
108 |
-
xq_out = torch.view_as_real(xq_ * freqs_cis_seq.unsqueeze(0)).flatten(3)
|
109 |
-
xk_out = torch.view_as_real(xk_ * freqs_cis_seq.unsqueeze(0)).flatten(3)
|
110 |
-
|
111 |
-
return xq_out.type_as(xq), xk_out.type_as(xk)
|
112 |
-
|
113 |
-
|
114 |
-
class GroupedQueryAttention(torch.nn.Module):
|
115 |
-
"""Grouped Query Attention (GQA) implementation"""
|
116 |
-
|
117 |
-
def __init__(self, config):
|
118 |
-
super().__init__()
|
119 |
-
assert config.n_embd % config.n_head == 0
|
120 |
-
|
121 |
-
head_dim = config.n_embd // config.n_head
|
122 |
-
self.head_dim = head_dim
|
123 |
-
self.n_head = config.n_head
|
124 |
-
self.n_embd = config.n_embd
|
125 |
-
self.n_query_groups = config.n_query_groups
|
126 |
-
|
127 |
-
self.kv_heads = config.n_head // config.n_query_groups if config.use_gqa else config.n_head
|
128 |
-
qkv_proj_size = (config.n_head + 2 * self.kv_heads) * head_dim
|
129 |
-
|
130 |
-
self.c_attn = torch.nn.Linear(config.n_embd, qkv_proj_size, bias=config.bias)
|
131 |
-
self.c_proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
132 |
-
|
133 |
-
# Flash attention support
|
134 |
-
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
135 |
-
if not self.flash:
|
136 |
-
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
137 |
-
.view(1, 1, config.block_size, config.block_size))
|
138 |
-
|
139 |
-
# Query-key normalization
|
140 |
-
self.qk_norm = getattr(config, 'use_qk_norm', False)
|
141 |
-
if self.qk_norm:
|
142 |
-
self.q_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6))
|
143 |
-
self.k_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6))
|
144 |
-
|
145 |
-
def forward(self, x, freqs_cis=None):
|
146 |
-
B, T, C = x.size()
|
147 |
-
qkv = self.c_attn(x)
|
148 |
-
head_dim = C // self.n_head
|
149 |
-
|
150 |
-
q_size = self.n_head * head_dim
|
151 |
-
k_size = self.kv_heads * head_dim
|
152 |
-
v_size = self.kv_heads * head_dim
|
153 |
-
|
154 |
-
q, k, v = qkv.split([q_size, k_size, v_size], dim=2)
|
155 |
-
|
156 |
-
q = q.view(B, T, self.n_head, head_dim).transpose(1, 2)
|
157 |
-
k = k.view(B, T, self.kv_heads, head_dim).transpose(1, 2)
|
158 |
-
v = v.view(B, T, self.kv_heads, head_dim).transpose(1, 2)
|
159 |
-
|
160 |
-
# Repeat k and v if needed for GQA
|
161 |
-
if self.kv_heads < self.n_head:
|
162 |
-
repeats = self.n_head // self.kv_heads
|
163 |
-
k = k.repeat_interleave(repeats, dim=1)
|
164 |
-
v = v.repeat_interleave(repeats, dim=1)
|
165 |
-
|
166 |
-
# Apply rotary embeddings
|
167 |
-
if freqs_cis is not None:
|
168 |
-
q, k = apply_rotary_emb(q, k, freqs_cis)
|
169 |
-
|
170 |
-
# Apply query-key normalization
|
171 |
-
if self.qk_norm:
|
172 |
-
q = self.q_norm(q)
|
173 |
-
k = self.k_norm(k)
|
174 |
-
|
175 |
-
# Compute attention
|
176 |
-
if self.flash:
|
177 |
-
y = torch.nn.functional.scaled_dot_product_attention(
|
178 |
-
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True
|
179 |
-
)
|
180 |
-
else:
|
181 |
-
att = (q @ k.transpose(-2, -1)) * (1.0 / torch.sqrt(torch.tensor(k.size(-1), dtype=torch.float32)))
|
182 |
-
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
183 |
-
att = torch.nn.functional.softmax(att, dim=-1)
|
184 |
-
y = att @ v
|
185 |
-
|
186 |
-
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
187 |
-
y = self.c_proj(y)
|
188 |
-
return y
|
189 |
-
|
190 |
-
|
191 |
-
class Block(torch.nn.Module):
|
192 |
-
"""Transformer block"""
|
193 |
-
|
194 |
-
def __init__(self, config):
|
195 |
-
super().__init__()
|
196 |
-
self.ln_1 = RMSNorm(config.n_embd, eps=config.eps)
|
197 |
-
self.ln_2 = RMSNorm(config.n_embd, eps=config.eps)
|
198 |
-
self.attn = GroupedQueryAttention(config)
|
199 |
-
|
200 |
-
# MLP implementation based on configuration
|
201 |
-
if config.use_swiglu:
|
202 |
-
# SwiGLU MLP
|
203 |
-
self.mlp = torch.nn.ModuleDict(dict(
|
204 |
-
gate=torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
|
205 |
-
up=torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
|
206 |
-
down=torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias),
|
207 |
-
act=torch.nn.SiLU(),
|
208 |
-
))
|
209 |
-
m = self.mlp
|
210 |
-
self.mlpf = lambda x: m.down(m.act(m.up(x)) * m.gate(x))
|
211 |
-
else:
|
212 |
-
# Traditional MLP
|
213 |
-
self.mlp = torch.nn.ModuleDict(dict(
|
214 |
-
c_fc=torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
|
215 |
-
c_proj=torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias),
|
216 |
-
act=torch.nn.GELU(),
|
217 |
-
))
|
218 |
-
m = self.mlp
|
219 |
-
self.mlpf = lambda x: m.c_proj(m.act(m.c_fc(x)))
|
220 |
-
|
221 |
-
def forward(self, x, freqs_cis=None):
|
222 |
-
x = x + self.attn(self.ln_1(x), freqs_cis)
|
223 |
-
x = x + self.mlpf(self.ln_2(x))
|
224 |
-
return x
|
225 |
-
|
226 |
-
|
227 |
-
class CosmicFish(torch.nn.Module):
|
228 |
-
"""
|
229 |
-
CosmicFish model for inference only.
|
230 |
-
Features: Rotary Positional Embeddings, Grouped-Query Attention, SwiGLU, RMSNorm
|
231 |
-
"""
|
232 |
-
|
233 |
-
def __init__(self, config):
|
234 |
-
super().__init__()
|
235 |
-
self.config = config
|
236 |
-
|
237 |
-
self.transformer = torch.nn.ModuleDict(dict(
|
238 |
-
wte=torch.nn.Embedding(config.vocab_size, config.n_embd),
|
239 |
-
h=torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
240 |
-
ln_f=RMSNorm(config.n_embd, eps=config.eps),
|
241 |
-
))
|
242 |
-
|
243 |
-
self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
244 |
-
|
245 |
-
# Share weights between embedding and output
|
246 |
-
self.transformer.wte.weight = self.lm_head.weight
|
247 |
-
|
248 |
-
# Precompute rotary embedding frequencies
|
249 |
-
if config.use_rotary:
|
250 |
-
head_dim = config.n_embd // config.n_head
|
251 |
-
self.freqs_cis = precompute_freqs_cis(head_dim, config.block_size)
|
252 |
-
else:
|
253 |
-
self.freqs_cis = None
|
254 |
-
self.transformer.wpe = torch.nn.Embedding(config.block_size, config.n_embd)
|
255 |
-
|
256 |
-
def get_num_params(self, non_embedding=True):
|
257 |
-
"""Return the number of parameters in the model."""
|
258 |
-
n_params = sum(p.numel() for p in self.parameters())
|
259 |
-
if non_embedding and hasattr(self.transformer, 'wpe'):
|
260 |
-
n_params -= self.transformer.wpe.weight.numel()
|
261 |
-
return n_params
|
262 |
-
|
263 |
-
def forward(self, idx, targets=None):
|
264 |
-
"""Forward pass through the model."""
|
265 |
-
device = idx.device
|
266 |
-
b, t = idx.size()
|
267 |
-
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
268 |
-
|
269 |
-
# Get token embeddings
|
270 |
-
tok_emb = self.transformer.wte(idx)
|
271 |
-
|
272 |
-
# Handle positional embeddings
|
273 |
-
if self.config.use_rotary:
|
274 |
-
x = tok_emb
|
275 |
-
freqs_cis = self.freqs_cis.to(device) if self.freqs_cis is not None else None
|
276 |
-
else:
|
277 |
-
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
|
278 |
-
pos_emb = self.transformer.wpe(pos)
|
279 |
-
x = tok_emb + pos_emb
|
280 |
-
freqs_cis = None
|
281 |
-
|
282 |
-
# Apply transformer blocks
|
283 |
-
for block in self.transformer.h:
|
284 |
-
x = block(x, freqs_cis)
|
285 |
-
|
286 |
-
# Apply final normalization
|
287 |
-
x = self.transformer.ln_f(x)
|
288 |
-
|
289 |
-
# Calculate outputs
|
290 |
-
if targets is not None:
|
291 |
-
logits = self.lm_head(x)
|
292 |
-
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
293 |
-
else:
|
294 |
-
# For inference, only compute logits for the last token
|
295 |
-
logits = self.lm_head(x[:, [-1], :])
|
296 |
-
loss = None
|
297 |
-
|
298 |
-
return logits, loss
|
299 |
-
|
300 |
-
@torch.no_grad()
|
301 |
-
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
302 |
-
"""
|
303 |
-
Generate text by sampling from the model, token by token.
|
304 |
-
"""
|
305 |
-
for _ in range(max_new_tokens):
|
306 |
-
# Crop sequence to block size if needed
|
307 |
-
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
308 |
-
|
309 |
-
# Forward pass
|
310 |
-
logits, _ = self(idx_cond)
|
311 |
-
logits = logits[:, -1, :] / temperature
|
312 |
-
|
313 |
-
# Apply top-k sampling
|
314 |
-
if top_k is not None:
|
315 |
-
v, _ = torch.topk(logits, top_k)
|
316 |
-
logits[logits < v[:, [-1]]] = -float('Inf')
|
317 |
-
|
318 |
-
# Sample next token
|
319 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
320 |
-
idx_next = torch.multinomial(probs, num_samples=1)
|
321 |
-
|
322 |
-
# Append to sequence
|
323 |
-
idx = torch.cat((idx, idx_next), dim=1)
|
324 |
-
|
325 |
-
return idx
|
326 |
-
|
327 |
-
|
328 |
-
class RepetitionPenaltyLogitsProcessor:
|
329 |
-
"""Apply repetition penalty to prevent repeating tokens."""
|
330 |
-
|
331 |
-
def __init__(self, penalty=1.2):
|
332 |
-
self.penalty = penalty
|
333 |
-
|
334 |
-
def __call__(self, input_ids, scores):
|
335 |
-
"""Apply repetition penalty to logits where input_ids is already seen."""
|
336 |
-
score = torch.gather(scores, 1, input_ids)
|
337 |
-
# If score > 0, penalize by dividing; if score < 0, penalize by multiplying
|
338 |
-
score = torch.where(score > 0, score / self.penalty, score * self.penalty)
|
339 |
-
scores.scatter_(1, input_ids, score)
|
340 |
-
return scores
|
341 |
-
|
342 |
-
|
343 |
-
class CosmicFishChatSession:
|
344 |
-
"""Chat session for CosmicFish model from Hugging Face Hub."""
|
345 |
-
|
346 |
-
def __init__(self, model, tokenizer, config):
|
347 |
-
"""Initialize chat session with model and configuration."""
|
348 |
-
self.model = model
|
349 |
-
self.tokenizer = tokenizer
|
350 |
-
self.config = config
|
351 |
-
self.device = next(model.parameters()).device
|
352 |
-
self.history = []
|
353 |
-
self.history_tokens = []
|
354 |
-
self.max_history_tokens = config.max_history_tokens
|
355 |
-
self.prompt_template = config.prompt_template
|
356 |
-
self.human_prefix = config.human_prefix
|
357 |
-
self.assistant_prefix = config.assistant_prefix
|
358 |
-
self.end_of_turn = config.end_of_turn
|
359 |
-
self.block_size = config.block_size
|
360 |
-
self.debug_mode = config.debug_mode
|
361 |
-
self.repetition_penalty = config.repetition_penalty
|
362 |
-
self.min_tokens_to_generate = config.min_tokens_to_generate
|
363 |
-
self.max_retries = 20
|
364 |
-
|
365 |
-
self.fallback_responses = [
|
366 |
-
"I'd be happy to help with that. Could you provide more details about what specific information you're looking for?",
|
367 |
-
"That's a topic I can provide information about. What specific aspects would you like to know?",
|
368 |
-
"I understand your question. I can share factual information on this topic if you could specify what aspects you're interested in.",
|
369 |
-
"I can help with your question. To give you the most relevant information, could you clarify what specific details you're looking for?",
|
370 |
-
"I'd be glad to address your question. To provide the most helpful response, could you specify what particular aspects of this topic interest you?"
|
371 |
-
]
|
372 |
-
|
373 |
-
self.generation_failure_message = "I'm sorry, but I'm having difficulty generating a response to that prompt. Could you try rephrasing your question or asking something else?"
|
374 |
-
|
375 |
-
# For token counting
|
376 |
-
self.total_prompt_tokens = 0
|
377 |
-
self.total_generated_tokens = 0
|
378 |
-
|
379 |
-
# End markers for live generation
|
380 |
-
self.end_markers = [
|
381 |
-
f"{self.human_prefix}",
|
382 |
-
"Human:",
|
383 |
-
"\nHuman:",
|
384 |
-
"\nH:",
|
385 |
-
"H:",
|
386 |
-
"<|endoftext|>",
|
387 |
-
"Below is a conversation",
|
388 |
-
"\nA:",
|
389 |
-
"A:",
|
390 |
-
"</s>",
|
391 |
-
"User:",
|
392 |
-
"\nUser:"
|
393 |
-
]
|
394 |
-
|
395 |
-
# Print welcome message
|
396 |
-
if config.display_welcome:
|
397 |
-
self._print_welcome_message()
|
398 |
-
|
399 |
-
def _print_welcome_message(self):
|
400 |
-
"""Print a welcome message to the user."""
|
401 |
-
welcome_text = f"""
|
402 |
-
{'=' * 80}
|
403 |
-
Welcome to CosmicFish!
|
404 |
-
|
405 |
-
This is a {self.model.get_num_params() / 1e6:.1f}M parameter model made by MistyozAI.
|
406 |
-
CosmicFish features advanced architecture with RoPE, GQA, SwiGLU, and RMSNorm.
|
407 |
-
|
408 |
-
⚠️ DISCLAIMER: Since this {self.model.get_num_params() / 1e6:.1f}M parameter model is relatively
|
409 |
-
small, it is more likely to give incorrect answers or hallucinate compared to
|
410 |
-
larger models. Please verify important information from reliable sources.
|
411 |
-
|
412 |
-
Model: {DEFAULT_MODEL_REPO}
|
413 |
-
|
414 |
-
Type your prompts and CosmicFish will respond.
|
415 |
-
|
416 |
-
Special commands:
|
417 |
-
- /help: Show this help message
|
418 |
-
- /clear: Clear the conversation history
|
419 |
-
- /exit or /quit: Exit the chat
|
420 |
-
- /stats: Show token usage statistics
|
421 |
-
- /save [filename]: Save the conversation
|
422 |
-
- /load [filename]: Load a conversation
|
423 |
-
- /temp [value]: Set temperature (between 0.1 and 2.0)
|
424 |
-
- /penalty [value]: Set repetition penalty (1.0-2.0)
|
425 |
-
- /debug: Toggle debug mode
|
426 |
-
{'=' * 80}
|
427 |
-
"""
|
428 |
-
print(colored(welcome_text, 'cyan'))
|
429 |
-
|
430 |
-
def _format_prompt(self, user_input):
|
431 |
-
"""Format the complete prompt with history and current input."""
|
432 |
-
# Start with the template
|
433 |
-
formatted_prompt = self.prompt_template
|
434 |
-
|
435 |
-
# Add conversation history
|
436 |
-
for entry in self.history:
|
437 |
-
role, text = entry
|
438 |
-
if role == "human":
|
439 |
-
formatted_prompt += f"{self.human_prefix}{text}{self.end_of_turn}"
|
440 |
-
else: # assistant
|
441 |
-
formatted_prompt += f"{self.assistant_prefix}{text}{self.end_of_turn}"
|
442 |
-
|
443 |
-
# Add the current user input
|
444 |
-
formatted_prompt += f"{self.human_prefix}{user_input}{self.end_of_turn}{self.assistant_prefix}"
|
445 |
-
|
446 |
-
return formatted_prompt
|
447 |
-
|
448 |
-
def _tokenize(self, text):
|
449 |
-
"""Tokenize text and return token IDs."""
|
450 |
-
return self.tokenizer.encode(text)
|
451 |
-
|
452 |
-
def _update_history(self, user_input, response):
|
453 |
-
"""Update conversation history."""
|
454 |
-
# Add to text history
|
455 |
-
self.history.append(("human", user_input))
|
456 |
-
self.history.append(("assistant", response))
|
457 |
-
|
458 |
-
# Update token history for context window management
|
459 |
-
user_tokens = self._tokenize(f"{self.human_prefix}{user_input}{self.end_of_turn}")
|
460 |
-
response_tokens = self._tokenize(f"{self.assistant_prefix}{response}{self.end_of_turn}")
|
461 |
-
|
462 |
-
self.history_tokens.extend(user_tokens)
|
463 |
-
self.history_tokens.extend(response_tokens)
|
464 |
-
|
465 |
-
# Track token usage
|
466 |
-
self.total_prompt_tokens += len(user_tokens)
|
467 |
-
self.total_generated_tokens += len(response_tokens)
|
468 |
-
|
469 |
-
# Trim history if it gets too long
|
470 |
-
self._trim_history_if_needed()
|
471 |
-
|
472 |
-
def _trim_history_if_needed(self):
|
473 |
-
"""Trim history to fit within the context window."""
|
474 |
-
if len(self.history_tokens) > self.max_history_tokens:
|
475 |
-
# Remove oldest turns until we're under the limit
|
476 |
-
while len(self.history_tokens) > self.max_history_tokens and len(self.history) >= 2:
|
477 |
-
# Remove oldest human and assistant turn
|
478 |
-
self.history = self.history[2:]
|
479 |
-
|
480 |
-
# Find token boundary for the removed turns
|
481 |
-
user_turn = self.history[0][1]
|
482 |
-
assistant_turn = self.history[1][1]
|
483 |
-
user_tokens = len(self._tokenize(f"{self.human_prefix}{user_turn}{self.end_of_turn}"))
|
484 |
-
assistant_tokens = len(self._tokenize(f"{self.assistant_prefix}{assistant_turn}{self.end_of_turn}"))
|
485 |
-
|
486 |
-
# Update token history
|
487 |
-
self.history_tokens = self.history_tokens[user_tokens + assistant_tokens:]
|
488 |
-
|
489 |
-
def _should_stop_generation(self, text):
|
490 |
-
"""Check if generation should stop based on end markers."""
|
491 |
-
for marker in self.end_markers:
|
492 |
-
if marker in text:
|
493 |
-
return True
|
494 |
-
return False
|
495 |
-
|
496 |
-
def _clean_token_text(self, text):
|
497 |
-
|
498 |
-
text = text.replace('��', "'")
|
499 |
-
|
500 |
-
text = text.replace('�', "'")
|
501 |
-
text = text.replace('\ufffd', "'")
|
502 |
-
text = text.replace('\uFFFD', "'")
|
503 |
-
|
504 |
-
text = text.replace('’', "'")
|
505 |
-
text = text.replace('“', "'")
|
506 |
-
text = text.replace('�', "'")
|
507 |
-
text = text.replace('â€"', "'")
|
508 |
-
text = text.replace('â€"', "'")
|
509 |
-
|
510 |
-
return text
|
511 |
-
|
512 |
-
def generate_with_repetition_penalty(self, input_ids, max_new_tokens, temperature, top_k, penalty=1.2, live=False):
|
513 |
-
"""Custom generate function with repetition penalty and optional live generation."""
|
514 |
-
model = self.model
|
515 |
-
device = self.device
|
516 |
-
|
517 |
-
# Ensure model is in eval mode
|
518 |
-
model.eval()
|
519 |
-
|
520 |
-
# Initialize sequence with input_ids
|
521 |
-
generated = input_ids.clone()
|
522 |
-
|
523 |
-
# Initialize live text buffer
|
524 |
-
live_buffer = ""
|
525 |
-
|
526 |
-
# Create repetition penalty processor
|
527 |
-
rep_processor = RepetitionPenaltyLogitsProcessor(penalty=penalty)
|
528 |
-
|
529 |
-
# Counter for generated tokens
|
530 |
-
tokens_generated = 0
|
531 |
-
min_tokens = self.min_tokens_to_generate
|
532 |
-
|
533 |
-
# EOT token ID
|
534 |
-
eot_token_id = self.tokenizer.eos_token_id if hasattr(self.tokenizer, 'eos_token_id') else 50256
|
535 |
-
|
536 |
-
# Generate tokens one at a time
|
537 |
-
for _ in range(max_new_tokens):
|
538 |
-
# Get only the last block_size tokens if context is too long
|
539 |
-
if generated.size(1) > self.block_size:
|
540 |
-
context = generated[:, -self.block_size:]
|
541 |
-
else:
|
542 |
-
context = generated
|
543 |
-
|
544 |
-
# Forward pass for next token prediction
|
545 |
-
with torch.no_grad():
|
546 |
-
logits, _ = model(context)
|
547 |
-
|
548 |
-
# Get logits for the next token (last position)
|
549 |
-
next_token_logits = logits[:, -1, :]
|
550 |
-
|
551 |
-
# Apply temperature
|
552 |
-
next_token_logits = next_token_logits / temperature
|
553 |
-
|
554 |
-
# Apply repetition penalty
|
555 |
-
if penalty > 1.0:
|
556 |
-
next_token_logits = rep_processor(context, next_token_logits)
|
557 |
-
|
558 |
-
# Optional top-k sampling
|
559 |
-
if top_k is not None:
|
560 |
-
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
561 |
-
next_token_logits[indices_to_remove] = float('-inf')
|
562 |
-
|
563 |
-
# Convert logits to probabilities
|
564 |
-
probs = torch.nn.functional.softmax(next_token_logits, dim=-1)
|
565 |
-
|
566 |
-
# Sample next token
|
567 |
-
next_token = torch.multinomial(probs, num_samples=1)
|
568 |
-
|
569 |
-
# Check if the next token is EOT and break immediately if so
|
570 |
-
if next_token.item() == eot_token_id:
|
571 |
-
if live:
|
572 |
-
yield "", live_buffer, True
|
573 |
-
break
|
574 |
-
|
575 |
-
# Append next token to generated sequence
|
576 |
-
generated = torch.cat((generated, next_token), dim=1)
|
577 |
-
tokens_generated += 1
|
578 |
-
|
579 |
-
# If live generation, decode and yield the token
|
580 |
-
if live:
|
581 |
-
# Decode the next token
|
582 |
-
next_token_text = self.tokenizer.decode([next_token.item()])
|
583 |
-
# Clean the token text to fix encoding issues
|
584 |
-
next_token_text = self._clean_token_text(next_token_text)
|
585 |
-
live_buffer += next_token_text
|
586 |
-
|
587 |
-
# Check if we've hit an end marker in the buffer
|
588 |
-
eot_marker_pos = live_buffer.find("<|endoftext|>")
|
589 |
-
if eot_marker_pos != -1:
|
590 |
-
# Cut off at the EOT marker
|
591 |
-
live_buffer = live_buffer[:eot_marker_pos]
|
592 |
-
yield "", live_buffer, True
|
593 |
-
break
|
594 |
-
|
595 |
-
# Check other end markers
|
596 |
-
should_stop = tokens_generated >= min_tokens and self._should_stop_generation(live_buffer)
|
597 |
-
yield next_token_text, live_buffer, should_stop
|
598 |
-
|
599 |
-
if should_stop:
|
600 |
-
break
|
601 |
-
|
602 |
-
# For non-live generation, check if we should stop
|
603 |
-
elif tokens_generated >= min_tokens:
|
604 |
-
# Check for end markers in the recent generated tokens
|
605 |
-
recent_text = self.tokenizer.decode(generated[0, -20:].tolist())
|
606 |
-
if self._should_stop_generation(recent_text):
|
607 |
-
break
|
608 |
-
|
609 |
-
# Check if we generated any tokens at all
|
610 |
-
if tokens_generated == 0 and not live:
|
611 |
-
if self.debug_mode:
|
612 |
-
print(colored("\n[No tokens generated in this attempt]", "red"))
|
613 |
-
return None
|
614 |
-
|
615 |
-
if not live:
|
616 |
-
return generated
|
617 |
-
|
618 |
-
def generate_response(self, user_input):
|
619 |
-
"""Generate a response to the user input."""
|
620 |
-
# Format the complete prompt
|
621 |
-
prompt = self._format_prompt(user_input)
|
622 |
-
|
623 |
-
# Tokenize the prompt
|
624 |
-
input_ids = torch.tensor(self._tokenize(prompt), dtype=torch.long).unsqueeze(0).to(self.device)
|
625 |
-
|
626 |
-
# Ensure we don't exceed the model's context length
|
627 |
-
if input_ids.size(1) > self.block_size:
|
628 |
-
# If too long, keep the beginning part with the instruction template and trim the middle
|
629 |
-
instruction_tokens = self._tokenize(self.prompt_template)
|
630 |
-
# Keep the instruction and the most recent conversation that will fit
|
631 |
-
keep_from_beginning = len(instruction_tokens)
|
632 |
-
keep_from_end = self.block_size - keep_from_beginning
|
633 |
-
|
634 |
-
# Combine beginning and end, ensuring we don't exceed array bounds
|
635 |
-
if keep_from_end < 0:
|
636 |
-
# If instruction alone is too long, trim it (shouldn't happen with reasonable templates)
|
637 |
-
input_ids = input_ids[:, :self.block_size]
|
638 |
-
else:
|
639 |
-
# Keep instruction and most recent conversation
|
640 |
-
input_ids = torch.cat([
|
641 |
-
input_ids[:, :keep_from_beginning],
|
642 |
-
input_ids[:, -(keep_from_end):]
|
643 |
-
], dim=1)
|
644 |
-
|
645 |
-
# Track generation start time
|
646 |
-
start_time = time.time()
|
647 |
-
|
648 |
-
# Always use live generation
|
649 |
-
return self._generate_live_response(input_ids, user_input, start_time)
|
650 |
-
|
651 |
-
def _generate_live_response(self, input_ids, user_input, start_time):
|
652 |
-
"""Generate response with live token-by-token output."""
|
653 |
-
# Initialize for live generation
|
654 |
-
live_text = ""
|
655 |
-
tokens_generated = 0
|
656 |
-
retry_count = 0
|
657 |
-
|
658 |
-
# Keep trying until we get a valid response or exhaust retries
|
659 |
-
while retry_count <= self.max_retries:
|
660 |
-
if retry_count > 0:
|
661 |
-
# Calculate temperature for this retry
|
662 |
-
if retry_count % 2 == 0:
|
663 |
-
# Even retries: increase temperature
|
664 |
-
temp_adjustment = min(0.2 * (retry_count // 2), 0.8)
|
665 |
-
current_temp = min(self.config.temperature + temp_adjustment, 1.8)
|
666 |
-
else:
|
667 |
-
# Odd retries: decrease temperature
|
668 |
-
temp_adjustment = min(0.2 * ((retry_count + 1) // 2), 0.4)
|
669 |
-
current_temp = max(self.config.temperature - temp_adjustment, 0.2)
|
670 |
-
|
671 |
-
if self.debug_mode:
|
672 |
-
print(colored(f"\n[Live retry {retry_count}: Using temperature {current_temp:.2f}]", "yellow"))
|
673 |
-
else:
|
674 |
-
current_temp = self.config.temperature
|
675 |
-
|
676 |
-
# Reset for this attempt
|
677 |
-
live_text = ""
|
678 |
-
tokens_generated = 0
|
679 |
-
generation_failed = False
|
680 |
-
|
681 |
-
# Try to generate with current settings
|
682 |
-
try:
|
683 |
-
# Generate with live output
|
684 |
-
for token_text, live_buffer, should_stop in self.generate_with_repetition_penalty(
|
685 |
-
input_ids,
|
686 |
-
max_new_tokens=self.config.max_new_tokens,
|
687 |
-
temperature=current_temp,
|
688 |
-
top_k=self.config.top_k,
|
689 |
-
penalty=self.repetition_penalty,
|
690 |
-
live=True
|
691 |
-
):
|
692 |
-
# If we should stop but there's a token, this is the last one
|
693 |
-
if should_stop:
|
694 |
-
# Update with the final clean buffer (will have EOT removed if present)
|
695 |
-
live_text = live_buffer
|
696 |
-
break
|
697 |
-
|
698 |
-
# Otherwise add the token and continue
|
699 |
-
if token_text:
|
700 |
-
live_text += token_text
|
701 |
-
tokens_generated += 1
|
702 |
-
yield token_text, live_text, False
|
703 |
-
|
704 |
-
# Check if we got a valid response
|
705 |
-
if not live_text or len(live_text.strip()) < 10:
|
706 |
-
if self.debug_mode:
|
707 |
-
print(colored("\n[Live generation produced empty or too short response, retrying]", "yellow"))
|
708 |
-
generation_failed = True
|
709 |
-
retry_count += 1
|
710 |
-
# Clear any partial output
|
711 |
-
if retry_count <= self.max_retries:
|
712 |
-
print("\r" + " " * 80 + "\r", end="") # Clear the line
|
713 |
-
else:
|
714 |
-
# We got a valid response, stop retrying
|
715 |
-
break
|
716 |
-
|
717 |
-
except Exception as e:
|
718 |
-
if self.debug_mode:
|
719 |
-
print(colored(f"\n[Live generation error: {str(e)}, retrying]", "red"))
|
720 |
-
generation_failed = True
|
721 |
-
retry_count += 1
|
722 |
-
|
723 |
-
# If we still failed after all retries, use the failure message
|
724 |
-
if generation_failed or not live_text or len(live_text.strip()) < 10:
|
725 |
-
live_text = self.generation_failure_message
|
726 |
-
if self.debug_mode:
|
727 |
-
print(colored(f"\n[Returning failure message after {retry_count} live retries]", "red"))
|
728 |
-
|
729 |
-
# Calculate time taken and metrics
|
730 |
-
time_taken = time.time() - start_time
|
731 |
-
tokens_per_second = tokens_generated / time_taken if time_taken > 0 else 0
|
732 |
-
|
733 |
-
# Update history
|
734 |
-
self._update_history(user_input, live_text)
|
735 |
-
|
736 |
-
# Log generation stats
|
737 |
-
logger.debug(f"Generated {tokens_generated} tokens in {time_taken:.2f}s ({tokens_per_second:.2f} tokens/s)")
|
738 |
-
|
739 |
-
# Final yield of the complete response
|
740 |
-
yield "", live_text, True
|
741 |
-
|
742 |
-
def execute_command(self, command):
|
743 |
-
"""Execute a special command prefixed with /."""
|
744 |
-
command = command.strip()
|
745 |
-
|
746 |
-
if command == '/help':
|
747 |
-
self._print_welcome_message()
|
748 |
-
return True
|
749 |
-
|
750 |
-
elif command == '/clear':
|
751 |
-
self.history = []
|
752 |
-
self.history_tokens = []
|
753 |
-
print(colored("Conversation history cleared.", 'yellow'))
|
754 |
-
return True
|
755 |
-
|
756 |
-
elif command in ['/exit', '/quit']:
|
757 |
-
print(colored("Goodbye!", 'cyan'))
|
758 |
-
return False # Signal to exit the chat loop
|
759 |
-
|
760 |
-
elif command == '/stats':
|
761 |
-
prompt_tokens = self.total_prompt_tokens
|
762 |
-
generated_tokens = self.total_generated_tokens
|
763 |
-
total_tokens = prompt_tokens + generated_tokens
|
764 |
-
|
765 |
-
stats = f"""
|
766 |
-
Token usage statistics:
|
767 |
-
- Prompt tokens: {prompt_tokens}
|
768 |
-
- Generated tokens: {generated_tokens}
|
769 |
-
- Total tokens: {total_tokens}
|
770 |
-
- Current history length: {len(self.history_tokens)} tokens
|
771 |
-
- Current repetition penalty: {self.repetition_penalty}
|
772 |
-
- Current temperature: {self.config.temperature}
|
773 |
-
- Model: CosmicFish ({self.model.get_num_params() / 1e6:.1f}M parameters)
|
774 |
-
- Source: {DEFAULT_MODEL_REPO}
|
775 |
-
"""
|
776 |
-
print(colored(stats, 'yellow'))
|
777 |
-
return True
|
778 |
-
|
779 |
-
elif command == '/debug':
|
780 |
-
self.debug_mode = not self.debug_mode
|
781 |
-
self.config.debug_mode = self.debug_mode # Sync with config
|
782 |
-
mode = "enabled" if self.debug_mode else "disabled"
|
783 |
-
print(colored(f"Debug mode {mode}", 'yellow'))
|
784 |
-
return True
|
785 |
-
|
786 |
-
elif command.startswith('/penalty '):
|
787 |
-
try:
|
788 |
-
penalty = float(command[9:].strip())
|
789 |
-
if 1.0 <= penalty <= 2.0:
|
790 |
-
self.repetition_penalty = penalty
|
791 |
-
print(colored(f"Repetition penalty set to {penalty}", 'yellow'))
|
792 |
-
else:
|
793 |
-
print(colored("Repetition penalty should be between 1.0 and 2.0", 'red'))
|
794 |
-
except ValueError:
|
795 |
-
print(colored("Invalid repetition penalty value. Please use a number between 1.0 and 2.0", 'red'))
|
796 |
-
return True
|
797 |
-
|
798 |
-
elif command.startswith('/temp '):
|
799 |
-
try:
|
800 |
-
temp = float(command[6:].strip())
|
801 |
-
if 0.1 <= temp <= 2.0:
|
802 |
-
self.config.temperature = temp
|
803 |
-
print(colored(f"Temperature set to {temp}", 'yellow'))
|
804 |
-
else:
|
805 |
-
print(colored("Temperature should be between 0.1 and 2.0", 'red'))
|
806 |
-
except ValueError:
|
807 |
-
print(colored("Invalid temperature value. Please use a number between 0.1 and 2.0", 'red'))
|
808 |
-
return True
|
809 |
-
|
810 |
-
elif command.startswith('/save '):
|
811 |
-
filename = command[6:].strip()
|
812 |
-
if not filename:
|
813 |
-
print(colored("Please specify a filename: /save <filename>", 'red'))
|
814 |
-
return True
|
815 |
-
|
816 |
-
try:
|
817 |
-
# Create conversations directory if it doesn't exist
|
818 |
-
os.makedirs('conversations', exist_ok=True)
|
819 |
-
|
820 |
-
# Add .txt extension if not present
|
821 |
-
if not filename.endswith('.txt'):
|
822 |
-
filename += '.txt'
|
823 |
-
|
824 |
-
filepath = os.path.join('conversations', filename)
|
825 |
-
|
826 |
-
with open(filepath, 'w', encoding='utf-8') as f:
|
827 |
-
for entry in self.history:
|
828 |
-
role, text = entry
|
829 |
-
prefix = self.human_prefix if role == "human" else self.assistant_prefix
|
830 |
-
f.write(f"{prefix}{text}{self.end_of_turn}")
|
831 |
-
|
832 |
-
print(colored(f"Conversation saved to {filepath}", 'green'))
|
833 |
-
|
834 |
-
except Exception as e:
|
835 |
-
print(colored(f"Error saving conversation: {str(e)}", 'red'))
|
836 |
-
|
837 |
-
return True
|
838 |
-
|
839 |
-
elif command.startswith('/load '):
|
840 |
-
filename = command[6:].strip()
|
841 |
-
if not filename:
|
842 |
-
print(colored("Please specify a filename: /load <filename>", 'red'))
|
843 |
-
return True
|
844 |
-
|
845 |
-
try:
|
846 |
-
# Add .txt extension if not present
|
847 |
-
if not filename.endswith('.txt'):
|
848 |
-
filename += '.txt'
|
849 |
-
|
850 |
-
filepath = os.path.join('conversations', filename)
|
851 |
-
|
852 |
-
if not os.path.exists(filepath):
|
853 |
-
print(colored(f"File not found: {filepath}", 'red'))
|
854 |
-
return True
|
855 |
-
|
856 |
-
with open(filepath, 'r', encoding='utf-8') as f:
|
857 |
-
content = f.read()
|
858 |
-
|
859 |
-
# Parse conversation turns
|
860 |
-
self.history = []
|
861 |
-
self.history_tokens = []
|
862 |
-
|
863 |
-
# Split by end of turn marker
|
864 |
-
turns = content.split(self.end_of_turn)
|
865 |
-
for turn in turns:
|
866 |
-
turn = turn.strip()
|
867 |
-
if not turn:
|
868 |
-
continue
|
869 |
-
|
870 |
-
if turn.startswith(self.human_prefix):
|
871 |
-
text = turn[len(self.human_prefix):].strip()
|
872 |
-
self.history.append(("human", text))
|
873 |
-
elif turn.startswith(self.assistant_prefix):
|
874 |
-
text = turn[len(self.assistant_prefix):].strip()
|
875 |
-
self.history.append(("assistant", text))
|
876 |
-
|
877 |
-
# Recalculate token counts
|
878 |
-
self.history_tokens = []
|
879 |
-
for entry in self.history:
|
880 |
-
role, text = entry
|
881 |
-
if role == "human":
|
882 |
-
self.history_tokens.extend(self._tokenize(f"{self.human_prefix}{text}{self.end_of_turn}"))
|
883 |
-
else:
|
884 |
-
self.history_tokens.extend(self._tokenize(f"{self.assistant_prefix}{text}{self.end_of_turn}"))
|
885 |
-
|
886 |
-
print(colored(f"Loaded conversation from {filepath} ({len(self.history) // 2} turns)", 'green'))
|
887 |
-
|
888 |
-
# Print the conversation
|
889 |
-
for i in range(0, len(self.history), 2):
|
890 |
-
if i < len(self.history):
|
891 |
-
user_text = self.history[i][1]
|
892 |
-
print(colored(f"\nYou: {user_text}", 'green'))
|
893 |
-
|
894 |
-
if i + 1 < len(self.history):
|
895 |
-
assistant_text = self.history[i + 1][1]
|
896 |
-
print(colored("CosmicFish: ", 'blue'), end="")
|
897 |
-
for line in assistant_text.split('\n'):
|
898 |
-
wrapped_lines = textwrap.wrap(line, width=100) if line.strip() else ['']
|
899 |
-
for wrapped_line in wrapped_lines:
|
900 |
-
print(wrapped_line)
|
901 |
-
|
902 |
-
except Exception as e:
|
903 |
-
print(colored(f"Error loading conversation: {str(e)}", 'red'))
|
904 |
-
|
905 |
-
return True
|
906 |
-
|
907 |
-
else:
|
908 |
-
print(colored(f"Unknown command: {command}. Type /help for available commands.", 'red'))
|
909 |
-
return True
|
910 |
-
|
911 |
-
|
912 |
-
def download_cosmicfish_from_hub(model_repo=DEFAULT_MODEL_REPO, device='cpu'):
|
913 |
-
"""Download and load CosmicFish model from Hugging Face Hub"""
|
914 |
-
print(colored(f"Downloading CosmicFish from Hugging Face: {model_repo}", "cyan"))
|
915 |
-
|
916 |
-
try:
|
917 |
-
# Download the model files to local cache
|
918 |
-
print("Downloading model files...")
|
919 |
-
cache_dir = snapshot_download(repo_id=model_repo, cache_dir=None)
|
920 |
-
print(f"Model cached at: {cache_dir}")
|
921 |
-
|
922 |
-
# Load config
|
923 |
-
config_path = os.path.join(cache_dir, "config.json")
|
924 |
-
with open(config_path, "r") as f:
|
925 |
-
config_dict = json.load(f)
|
926 |
-
|
927 |
-
# Create CosmicConfig
|
928 |
-
config = CosmicConfig(
|
929 |
-
vocab_size=config_dict["vocab_size"],
|
930 |
-
block_size=config_dict["block_size"],
|
931 |
-
n_layer=config_dict["n_layer"],
|
932 |
-
n_head=config_dict["n_head"],
|
933 |
-
n_embd=config_dict["n_embd"],
|
934 |
-
bias=config_dict["bias"],
|
935 |
-
dropout=0.0, # Set to 0 for inference
|
936 |
-
eps=config_dict.get("eps", 1e-6),
|
937 |
-
use_rotary=config_dict["use_rotary"],
|
938 |
-
use_swiglu=config_dict["use_swiglu"],
|
939 |
-
use_gqa=config_dict["use_gqa"],
|
940 |
-
n_query_groups=config_dict["n_query_groups"],
|
941 |
-
use_qk_norm=config_dict.get("use_qk_norm", False)
|
942 |
-
)
|
943 |
-
|
944 |
-
# Create model
|
945 |
-
print("Creating model...")
|
946 |
-
model = CosmicFish(config)
|
947 |
-
|
948 |
-
# Load weights
|
949 |
-
print("Loading weights...")
|
950 |
-
weights_path = os.path.join(cache_dir, "pytorch_model.bin")
|
951 |
-
state_dict = torch.load(weights_path, map_location=device)
|
952 |
-
model.load_state_dict(state_dict)
|
953 |
-
model.to(device)
|
954 |
-
model.eval()
|
955 |
-
|
956 |
-
print(f"Model loaded: {model.get_num_params() / 1e6:.1f}M parameters")
|
957 |
-
print(f"Device: {device}")
|
958 |
-
return model, config
|
959 |
-
|
960 |
-
except Exception as e:
|
961 |
-
print(colored(f"Error downloading/loading model: {str(e)}", "red"))
|
962 |
-
print(colored("Make sure you have internet connection and the model repo exists", "yellow"))
|
963 |
-
sys.exit(1)
|
964 |
-
|
965 |
-
|
966 |
-
def load_tokenizer():
|
967 |
-
print("Loading tokenizer...")
|
968 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
969 |
-
print("Tokenizer loaded")
|
970 |
-
return tokenizer
|
971 |
-
|
972 |
-
|
973 |
-
def main():
|
974 |
-
parser = argparse.ArgumentParser(description="Chat with CosmicFish model from Hugging Face Hub")
|
975 |
-
|
976 |
-
# Model parameters
|
977 |
-
parser.add_argument("--model_repo", type=str, default=DEFAULT_MODEL_REPO,
|
978 |
-
help=f"Hugging Face model repository (default: {DEFAULT_MODEL_REPO})")
|
979 |
-
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
|
980 |
-
help="Device to use (cuda or cpu)")
|
981 |
-
|
982 |
-
# Generation parameters
|
983 |
-
parser.add_argument("--temperature", type=float, default=0.7,
|
984 |
-
help="Temperature for sampling (default: 0.7)")
|
985 |
-
parser.add_argument("--max_tokens", type=int, default=512,
|
986 |
-
help="Maximum number of tokens to generate per response")
|
987 |
-
parser.add_argument("--min_tokens", type=int, default=10,
|
988 |
-
help="Minimum number of tokens to generate per response")
|
989 |
-
parser.add_argument("--top_k", type=int, default=40,
|
990 |
-
help="Top-k sampling (0 to disable)")
|
991 |
-
parser.add_argument("--repetition_penalty", type=float, default=1.2,
|
992 |
-
help="Repetition penalty (1.0 = no penalty, 1.2 = mild, 1.5 = moderate)")
|
993 |
-
|
994 |
-
# Chat parameters
|
995 |
-
parser.add_argument("--human_prefix", type=str, default="Human: ",
|
996 |
-
help="Prefix for human messages")
|
997 |
-
parser.add_argument("--assistant_prefix", type=str, default="Assistant: ",
|
998 |
-
help="Prefix for assistant messages")
|
999 |
-
parser.add_argument("--end_of_turn", type=str, default="\n\n",
|
1000 |
-
help="Delimiter between conversation turns")
|
1001 |
-
parser.add_argument("--instruction", type=str,
|
1002 |
-
default=DEFAULT_PROMPT_TEMPLATE,
|
1003 |
-
help="Instruction prompt to prepend to the conversation")
|
1004 |
-
parser.add_argument("--max_history", type=int, default=1024,
|
1005 |
-
help="Maximum number of tokens to keep in history")
|
1006 |
-
|
1007 |
-
# UI parameters
|
1008 |
-
parser.add_argument("--no_welcome", action="store_true",
|
1009 |
-
help="Don't display the welcome message")
|
1010 |
-
parser.add_argument("--debug", action="store_true",
|
1011 |
-
help="Enable debug mode")
|
1012 |
-
|
1013 |
-
args = parser.parse_args()
|
1014 |
-
|
1015 |
-
# Configure device
|
1016 |
-
device = args.device
|
1017 |
-
if device == "cuda" and not torch.cuda.is_available():
|
1018 |
-
print(colored("CUDA is not available, falling back to CPU", "yellow"))
|
1019 |
-
device = "cpu"
|
1020 |
-
|
1021 |
-
try:
|
1022 |
-
# Download and load the model from HF Hub
|
1023 |
-
model, model_config = download_cosmicfish_from_hub(args.model_repo, device)
|
1024 |
-
|
1025 |
-
# Load tokenizer
|
1026 |
-
tokenizer = load_tokenizer()
|
1027 |
-
|
1028 |
-
# Create a config object with all the necessary parameters
|
1029 |
-
class ChatConfig:
|
1030 |
-
def __init__(self, args, block_size):
|
1031 |
-
self.device = device
|
1032 |
-
self.temperature = args.temperature
|
1033 |
-
self.max_new_tokens = args.max_tokens
|
1034 |
-
self.min_tokens_to_generate = args.min_tokens
|
1035 |
-
self.top_k = args.top_k
|
1036 |
-
self.human_prefix = args.human_prefix
|
1037 |
-
self.assistant_prefix = args.assistant_prefix
|
1038 |
-
self.end_of_turn = args.end_of_turn
|
1039 |
-
self.prompt_template = args.instruction
|
1040 |
-
self.max_history_tokens = args.max_history
|
1041 |
-
self.display_welcome = not args.no_welcome
|
1042 |
-
self.block_size = block_size
|
1043 |
-
self.debug_mode = args.debug
|
1044 |
-
self.repetition_penalty = args.repetition_penalty
|
1045 |
-
|
1046 |
-
config = ChatConfig(args, model_config.block_size)
|
1047 |
-
|
1048 |
-
# Initialize chat session
|
1049 |
-
chat = CosmicFishChatSession(model, tokenizer, config)
|
1050 |
-
|
1051 |
-
# Main chat loop
|
1052 |
-
print(colored("\nCosmicFish initialized! Type your message (or /help for commands).\n", 'cyan'))
|
1053 |
-
|
1054 |
-
while True:
|
1055 |
-
try:
|
1056 |
-
# Get user input
|
1057 |
-
user_input = input(colored("You: ", 'green'))
|
1058 |
-
|
1059 |
-
# Check if it's a command
|
1060 |
-
if user_input.startswith('/'):
|
1061 |
-
# Execute command, continue loop if True, exit if False
|
1062 |
-
if not chat.execute_command(user_input):
|
1063 |
-
break
|
1064 |
-
continue
|
1065 |
-
|
1066 |
-
# Skip if empty input
|
1067 |
-
if not user_input.strip():
|
1068 |
-
continue
|
1069 |
-
|
1070 |
-
# Generate response using live generation
|
1071 |
-
live_buffer = ""
|
1072 |
-
final_response = None
|
1073 |
-
|
1074 |
-
# Use the generator version
|
1075 |
-
response_generator = chat.generate_response(user_input)
|
1076 |
-
|
1077 |
-
try:
|
1078 |
-
# First print the assistant prefix
|
1079 |
-
print(colored("CosmicFish: ", 'blue'), end="")
|
1080 |
-
sys.stdout.flush()
|
1081 |
-
|
1082 |
-
for token, live_text, is_done in response_generator:
|
1083 |
-
# If this is the final clean response
|
1084 |
-
if is_done:
|
1085 |
-
final_response = live_text
|
1086 |
-
# Print the final response directly if we didn't get any tokens yet
|
1087 |
-
if not live_buffer:
|
1088 |
-
print(final_response, end="")
|
1089 |
-
break
|
1090 |
-
|
1091 |
-
# If we have a token to display
|
1092 |
-
if token:
|
1093 |
-
# Check if token contains <|endoftext|> and remove it if present
|
1094 |
-
if "<|endoftext|>" in token:
|
1095 |
-
token = token.replace("<|endoftext|>", "")
|
1096 |
-
if token: # Only print if there's anything left
|
1097 |
-
print(token, end="", flush=True)
|
1098 |
-
break
|
1099 |
-
|
1100 |
-
# Display it
|
1101 |
-
print(token, end="", flush=True)
|
1102 |
-
live_buffer += token
|
1103 |
-
|
1104 |
-
except KeyboardInterrupt:
|
1105 |
-
# Allow user to interrupt generation
|
1106 |
-
print("\n[Generation interrupted]")
|
1107 |
-
final_response = "I was going to respond, but I'll stop here since you interrupted."
|
1108 |
-
|
1109 |
-
# Add an extra line for readability
|
1110 |
-
print()
|
1111 |
-
|
1112 |
-
except KeyboardInterrupt:
|
1113 |
-
print("\n\nKeyboard interrupt detected. Type /exit to quit or continue chatting.")
|
1114 |
-
|
1115 |
-
except Exception as e:
|
1116 |
-
print(colored(f"\nError: {str(e)}", 'red'))
|
1117 |
-
logger.error(f"Error in chat loop: {str(e)}", exc_info=True)
|
1118 |
-
|
1119 |
-
except Exception as e:
|
1120 |
-
print(colored(f"Error setting up chat: {str(e)}", 'red'))
|
1121 |
-
logger.error(f"Error setting up chat: {str(e)}", exc_info=True)
|
1122 |
-
sys.exit(1)
|
1123 |
-
|
1124 |
-
|
1125 |
-
if __name__ == "__main__":
|
1126 |
-
try:
|
1127 |
-
main()
|
1128 |
-
except Exception as e:
|
1129 |
-
logger.error(f"Fatal error: {str(e)}", exc_info=True)
|
1130 |
-
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|