import math import torch import torch.nn as nn from torch.nn import functional as F class CosmicConfig: """Configuration class for CosmicFish.""" def __init__(self, vocab_size=50257, block_size=512, n_layer=10, n_head=16, n_embd=640, bias=True, dropout=0.0, # Always 0 for inference n_query_groups=4, eps=1e-6, use_rotary=True, use_swiglu=True, use_qk_norm=False, use_gqa=True): self.vocab_size = vocab_size self.block_size = block_size self.n_layer = n_layer self.n_head = n_head self.n_embd = n_embd self.bias = bias self.dropout = dropout self.eps = eps self.use_rotary = use_rotary self.use_swiglu = use_swiglu self.use_qk_norm = use_qk_norm self.use_gqa = use_gqa self.n_query_groups = n_query_groups if use_gqa else n_head # Ensure n_head is divisible by n_query_groups assert n_head % self.n_query_groups == 0, "n_head must be divisible by n_query_groups" class RMSNorm(nn.Module): """Root Mean Square Normalization""" def __init__(self, dim, eps=1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) return self.weight * (x / rms) def precompute_freqs_cis(dim, end, theta=10000.0): """Precompute the frequency tensor for complex exponentials (cis)""" freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) return freqs_cis def apply_rotary_emb(xq, xk, freqs_cis): """Apply rotary embeddings to input tensors""" xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) seq_len = xq_.size(2) if freqs_cis.size(0) < seq_len: raise ValueError(f"freqs_cis has only {freqs_cis.size(0)} values but sequence length is {seq_len}") freqs_cis_seq = freqs_cis[:seq_len] xq_out = torch.view_as_real(xq_ * freqs_cis_seq.unsqueeze(0)).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis_seq.unsqueeze(0)).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) class GroupedQueryAttention(nn.Module): """Grouped Query Attention (GQA) implementation""" def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 head_dim = config.n_embd // config.n_head self.head_dim = head_dim self.n_head = config.n_head self.n_embd = config.n_embd self.n_query_groups = config.n_query_groups self.kv_heads = config.n_head // config.n_query_groups if config.use_gqa else config.n_head qkv_proj_size = (config.n_head + 2 * self.kv_heads) * head_dim self.c_attn = nn.Linear(config.n_embd, qkv_proj_size, bias=config.bias) self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # Flash attention support self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') if not self.flash: self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) # Query-key normalization self.qk_norm = getattr(config, 'use_qk_norm', False) if self.qk_norm: self.q_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6)) self.k_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6)) def forward(self, x, freqs_cis=None): B, T, C = x.size() qkv = self.c_attn(x) head_dim = C // self.n_head q_size = self.n_head * head_dim k_size = self.kv_heads * head_dim v_size = self.kv_heads * head_dim q, k, v = qkv.split([q_size, k_size, v_size], dim=2) q = q.view(B, T, self.n_head, head_dim).transpose(1, 2) k = k.view(B, T, self.kv_heads, head_dim).transpose(1, 2) v = v.view(B, T, self.kv_heads, head_dim).transpose(1, 2) # Repeat k and v if needed for GQA if self.kv_heads < self.n_head: repeats = self.n_head // self.kv_heads k = k.repeat_interleave(repeats, dim=1) v = v.repeat_interleave(repeats, dim=1) # Apply rotary embeddings if freqs_cis is not None: q, k = apply_rotary_emb(q, k, freqs_cis) # Apply query-key normalization if self.qk_norm: q = self.q_norm(q) k = self.k_norm(k) # Compute attention if self.flash: y = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True ) else: att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) att = F.softmax(att, dim=-1) y = att @ v y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.c_proj(y) return y class Block(nn.Module): """Transformer block""" def __init__(self, config): super().__init__() self.ln_1 = RMSNorm(config.n_embd, eps=config.eps) self.ln_2 = RMSNorm(config.n_embd, eps=config.eps) self.attn = GroupedQueryAttention(config) # MLP implementation based on configuration if config.use_swiglu: # SwiGLU MLP self.mlp = nn.ModuleDict(dict( gate=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias), up=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias), down=nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias), act=nn.SiLU(), )) m = self.mlp self.mlpf = lambda x: m.down(m.act(m.up(x)) * m.gate(x)) else: # Traditional MLP self.mlp = nn.ModuleDict(dict( c_fc=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias), c_proj=nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias), act=nn.GELU(), )) m = self.mlp self.mlpf = lambda x: m.c_proj(m.act(m.c_fc(x))) def forward(self, x, freqs_cis=None): x = x + self.attn(self.ln_1(x), freqs_cis) x = x + self.mlpf(self.ln_2(x)) return x class CosmicFish(nn.Module): """ CosmicFish model for inference only. Features: Rotary Positional Embeddings, Grouped-Query Attention, SwiGLU, RMSNorm """ def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte=nn.Embedding(config.vocab_size, config.n_embd), h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f=RMSNorm(config.n_embd, eps=config.eps), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Share weights between embedding and output self.transformer.wte.weight = self.lm_head.weight # Precompute rotary embedding frequencies if config.use_rotary: head_dim = config.n_embd // config.n_head self.freqs_cis = precompute_freqs_cis(head_dim, config.block_size) else: self.freqs_cis = None self.transformer.wpe = nn.Embedding(config.block_size, config.n_embd) def get_num_params(self, non_embedding=True): """Return the number of parameters in the model.""" n_params = sum(p.numel() for p in self.parameters()) if non_embedding and hasattr(self.transformer, 'wpe'): n_params -= self.transformer.wpe.weight.numel() return n_params def forward(self, idx, targets=None): """Forward pass through the model.""" device = idx.device b, t = idx.size() assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" # Get token embeddings tok_emb = self.transformer.wte(idx) # Handle positional embeddings if self.config.use_rotary: x = tok_emb freqs_cis = self.freqs_cis.to(device) if self.freqs_cis is not None else None else: pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) pos_emb = self.transformer.wpe(pos) x = tok_emb + pos_emb freqs_cis = None # Apply transformer blocks for block in self.transformer.h: x = block(x, freqs_cis) # Apply final normalization x = self.transformer.ln_f(x) # Calculate outputs if targets is not None: logits = self.lm_head(x) loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) else: # For inference, only compute logits for the last token logits = self.lm_head(x[:, [-1], :]) loss = None return logits, loss @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Generate text by sampling from the model, token by token. """ for _ in range(max_new_tokens): # Crop sequence to block size if needed idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # Forward pass logits, _ = self(idx_cond) logits = logits[:, -1, :] / temperature # Apply top-k sampling if top_k is not None: v, _ = torch.topk(logits, top_k) logits[logits < v[:, [-1]]] = -float('Inf') # Sample next token probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) # Append to sequence idx = torch.cat((idx, idx_next), dim=1) return idx