File size: 4,536 Bytes
e5e2eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import glob
import importlib
import itertools
import os

import torch
from common.bench_framework import (make_bwd_benchmark_for_case,
                                    make_bwd_benchmark_plot_for_case,
                                    make_fwd_benchmark_for_case,
                                    make_fwd_benchmark_plot_for_case)
from common.diff_engine import DiffCase, calculate_diff


def make_title_tag():
    if torch.cuda.is_available():
        dev_name = torch.cuda.get_device_name(0)
    else:
        dev_name = "CPU"

    torch_ver = torch.__version__

    return f"[{dev_name} | torch {torch_ver}]"


def plot_result(r_path):
    import matplotlib.pyplot as plt
    import pandas as pd
    df = pd.read_csv(r_path + ".csv")
    plt.figure(figsize=(12, 6))
    ax = df.plot(x="config", y=["Naive", "Cuda"], kind="bar", ax=plt.gca())
    ax.set_title("Speedup over torch (higher is better)\n" + make_title_tag(),
                 fontsize=14,
                 fontweight="bold")
    ax.set_ylabel("Relative Speedup", fontsize=14)
    ax.set_xlabel("")
    plt.xticks(rotation=45, fontsize=12, ha="right", rotation_mode="anchor")
    for container in ax.containers:
        labels = [f"x{v.get_height():.2f}" for v in container]
        ax.bar_label(container, labels=labels, label_type="edge", fontsize=10)
    plt.tight_layout()
    plt.savefig(r_path + ".png", bbox_inches="tight")


def main():
    ap = argparse.ArgumentParser()
    ap.add_argument("--case",
                    choices=["rms", "add_rms", "poly", "mul_poly"],
                    required=True)
    ap.add_argument("--plot", action="store_true")
    ap.add_argument(
        "--save-path",
        type=str,
        default="./configs/",
        help="Path to save benchmark results",
    )
    args = ap.parse_args()

    torch.set_default_device("cuda")
    mod = importlib.import_module(f"cases.{args.case}")
    case: DiffCase = mod.CASE

    calculate_diff(
        case,
        batch_size=2,
        seq_len=128,
        hidden_size=4096,
    )

    save_dir = os.path.join(args.save_path, args.case)
    if args.plot:
        batch_size_range = [1]
        seq_length_range = [4096, 8192, 16384]
        dim = [8192, 16384] if "poly" in args.case else [2048, 4096]
        configs = list(
            itertools.product(batch_size_range, seq_length_range, dim))
        plot_name = f"plot_{args.case}-fwd-perf"
        bench = make_fwd_benchmark_plot_for_case(
            case=case,
            configs=configs,
            plot_name=plot_name,
            line_names={
                "naive": "Naive",
                "cuda": "Cuda",
            },
        )
        bench.run(print_data=True, save_path=save_dir)
        plot_result(os.path.join(save_dir, plot_name))

        plot_name = f"plot_{args.case}-bwd-perf"
        bench = make_bwd_benchmark_plot_for_case(
            case=case,
            configs=configs,
            plot_name=plot_name,
            line_names={
                "naive": "Naive",
                "cuda": "Cuda",
            },
        )
        bench.run(print_data=True, save_path=save_dir)
        plot_result(os.path.join(save_dir, plot_name))
        for f in glob.glob(os.path.join(save_dir, "*.html")) + glob.glob(
                os.path.join(save_dir, "*.csv")):
            os.remove(f)
    else:
        batch_size_range = [2**i for i in range(0, 4, 1)]
        seq_length_range = [2**i for i in range(10, 14, 1)]
        dim = [8192, 16384] if "poly" in args.case else [2048, 4096]
        configs = list(
            itertools.product(dim, batch_size_range, seq_length_range))

        bench = make_fwd_benchmark_for_case(
            case=case,
            configs=configs,
            plot_name=f"{args.case}-fwd-perf",
            line_names={
                "naive": "Naive",
                "cuda": "Cuda",
                "speedup": "SpeedUp"
            },
        )

        bench.run(print_data=True, save_path=save_dir)

        bench = make_bwd_benchmark_for_case(
            case=case,
            configs=configs,
            plot_name=f"{args.case}-bwd-perf",
            line_names={
                "naive": "Naive",
                "cuda": "Cuda",
                "speedup": "SpeedUp"
            },
        )

        bench.run(print_data=True, save_path=save_dir)
        for f in glob.glob(os.path.join(save_dir, "*.html")) + glob.glob(
                os.path.join(save_dir, "*.png")):
            os.remove(f)


if __name__ == "__main__":
    main()