|
import torch |
|
from common.diff_engine import DiffCase |
|
|
|
import activation |
|
|
|
|
|
class FusedMulPolyNorm(torch.nn.Module): |
|
|
|
def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3) |
|
self.bias = torch.nn.Parameter(torch.zeros(1, dtype=dtype)) |
|
self.eps = eps |
|
|
|
def forward(self, x, mul): |
|
output = activation.poly_norm(x, self.weight, self.bias, self.eps) |
|
return output * mul |
|
|
|
|
|
class MulPoly(DiffCase): |
|
|
|
def build_inputs(self, bs, sl, hidden, dtype, eps): |
|
return { |
|
"x": torch.randn(bs, sl, hidden, dtype=dtype, requires_grad=True), |
|
"mul": torch.randn(bs, sl, hidden, dtype=dtype, |
|
requires_grad=True), |
|
"weight": torch.ones(3, dtype=dtype), |
|
"bias": torch.ones(1, dtype=dtype), |
|
"dim": hidden, |
|
"eps": eps, |
|
"dtype": dtype, |
|
} |
|
|
|
def make_naive(self, I): |
|
m = FusedMulPolyNorm(I["eps"], dtype=I["dtype"]) |
|
m.weight = torch.nn.Parameter(I["weight"].detach().clone()) |
|
m.bias = torch.nn.Parameter(I["bias"].detach().clone()) |
|
return m |
|
|
|
def make_cuda(self, I): |
|
m = activation.layers.FusedMulPolyNorm(I["eps"], dtype=I["dtype"]) |
|
m.weight = torch.nn.Parameter(I["weight"].detach().clone()) |
|
m.bias = torch.nn.Parameter(I["bias"].detach().clone()) |
|
return m |
|
|
|
def forward(self, obj, I): |
|
return obj(I["x"], I["mul"]) |
|
|
|
def grad_inputs(self, I): |
|
return [I["x"], I["mul"]] |
|
|
|
|
|
CASE = MulPoly() |
|
|