import torch from common.diff_engine import DiffCase import activation class FusedAddRMSNorm(torch.nn.Module): def __init__(self, d, eps=1e-6, dtype: torch.dtype = torch.float32): super().__init__() self.weight = torch.nn.Parameter(torch.ones(d, dtype=dtype)) self.eps = eps def forward(self, x, residual): h = x + residual return activation.rms_norm(h, self.weight, self.eps), h class AddRMS(DiffCase): def build_inputs(self, bs, sl, hidden, dtype, eps): return { "x": torch.randn(bs, sl, hidden, dtype=dtype, requires_grad=True), "residual": torch.randn(bs, sl, hidden, dtype=dtype, requires_grad=True), "weight": torch.ones(hidden, dtype=dtype), "dim": hidden, "eps": eps, "dtype": dtype, } def make_naive(self, I): m = FusedAddRMSNorm(I["dim"], I["eps"], dtype=I["dtype"]) m.weight = torch.nn.Parameter(I["weight"].detach().clone()) return m def make_cuda(self, I): m = activation.layers.FusedAddRMSNorm(I["dim"], I["eps"], dtype=I["dtype"]) m.weight = torch.nn.Parameter(I["weight"].detach().clone()) return m def forward(self, obj, I): return obj(I["x"], I["residual"]) def grad_inputs(self, I): return [I["x"], I["residual"]] CASE = AddRMS()