import torch from common.diff_engine import DiffCase import activation class RMS(DiffCase): def build_inputs(self, bs, sl, hidden, dtype, eps): return { "x": torch.randn(bs, sl, hidden, dtype=dtype, requires_grad=True), "weight": torch.ones(hidden, dtype=dtype), "dim": hidden, "eps": eps, "dtype": dtype, } def make_naive(self, I): m = torch.nn.RMSNorm(I["dim"], I["eps"], dtype=I["dtype"]) m.weight = torch.nn.Parameter(I["weight"].detach().clone()) return m def make_cuda(self, I): m = activation.layers.RMSNorm(I["dim"], I["eps"], dtype=I["dtype"]) m.weight = torch.nn.Parameter(I["weight"].detach().clone()) return m def forward(self, obj, I): return obj(I["x"]) def grad_inputs(self, I): return [I["x"]] CASE = RMS()