
Parallelize Muon with FSDP2

Motivation

Distributed Muon by Moonlight

While a distributed version of Muon is available, it has the drawback of redundant computations across GPUs.

Execution timeline of Distributed Muon

• C[i] : Compute Newton-Schulz(G) for i-th gradient

• AG[i] : AllGather i-th gradient

• G[i] : Gather i-th gradient

• SC[i] : Scatter i-th gradient

1



Algorithm

Parallel Muon

Algorithm 1 Parallel Muon
Require: DP partitioned gradient g, DP partitioned Momentum m, DP partitioned parameter p, momentum µ,
local rank r

1: // Apply momentum to g using local partitioned momentum m
2: g′ ← update with momentum(g,m, µ)
3: // Schedule g′ to rank R
4: R← schedule(g′, dp group)
5: // Gather g′ across DP into a full matrix G to rank R
6: G← gather(g′, dp group, dst=R)
7: // Calculate Newton-Schulz only in R
8: if r == R then
9: u← Newton-Schulz(G)

10: else
11: u← None
12: end if
13: // Scatter a full matrix u across DP

14: u′ ← scatter(u, dp group, src=R)
15: // Apply DP partitioned u′ to p
16: p′ ← apply update(p,u′)
17: return p′

We eliminate redundant computation by assigning each parameter to a specific GPU.
However, without proper scheduling, this optimization can lead to poor GPU utilization. In particular, although

redundant computation is avoided by assigning each parameter to a specific rank, it causes idle time—since all other
ranks must wait for the scatter communication to complete before proceeding.

Execution timeline of Parallel Muon

Scheduling Sub-Operations
We can schedule the whole sub-operations as follows, due to the following reasons:

• There are no dependencies between parameters.

• GPUs can execute computation and communication concurrently.

2



Execution timeline of re-scheduled Parallel Muon

We define the chunk size C as the number of GPUs and schedule each sub-operation in batches of size C.
This scheduling allows each GPU to continue computation even while waiting for collective communication to
complete.

[Algorithm] (To be written)

3



Load Balancing
If parameters in a chunk have imbalanced computation loads, idle bubbles may occur.
To mitigate this, we apply load balancing based on per-parameter FLOPs.

Imbalanced (Round Robin)

After Load Balancing

Implementation
The full implementation is available in optimizer/torch-ext/optimizer/muon.py. To enable concurrent
computation and communication, we use separate compute and communication streams (torch.cuda.Stream)
and use torch.cuda.Event to synchronize between sub-operations.

Thanks to the simplicity of torch.DTensor and torch.distributed, the implementation remains straight-
forward and low in complexity.

Evaluation
We evaluated the performance using 10B model currently in development, achieving 151 TFLOPS per GPU during
the optimizer step.

Model Size TFLOPs for Muon GPUs Elapsed time TFLOPS/GPU

10B 847.45 4xMI250 (8 devices) 1.4 s 151

Based on the breakdown, 7% of the time is attributed to updating sharded gradients and parameters, 78% to
GEMM operations, and the remaining 15% to non-overlapped communication overhead.

4


