File size: 14,717 Bytes
1317605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
<p align="center">
<img src="assets/logo.png" width="400">
</p>
## DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
[Paper](https://arxiv.org/abs/2308.15070) | [Project Page](https://0x3f3f3f3fun.github.io/projects/diffbir/)
 [](https://openxlab.org.cn/apps/detail/linxinqi/DiffBIR-official) [](https://colab.research.google.com/github/camenduru/DiffBIR-colab/blob/main/DiffBIR_colab.ipynb)
[Xinqi Lin](https://0x3f3f3f3fun.github.io/)<sup>1,\*</sup>, [Jingwen He](https://github.com/hejingwenhejingwen)<sup>2,3,\*</sup>, [Ziyan Chen](https://orcid.org/0000-0001-6277-5635)<sup>1</sup>, [Zhaoyang Lyu](https://scholar.google.com.tw/citations?user=gkXFhbwAAAAJ&hl=en)<sup>2</sup>, [Bo Dai](http://daibo.info/)<sup>2</sup>, [Fanghua Yu](https://github.com/Fanghua-Yu)<sup>1</sup>, [Wanli Ouyang](https://wlouyang.github.io/)<sup>2</sup>, [Yu Qiao](http://mmlab.siat.ac.cn/yuqiao)<sup>2</sup>, [Chao Dong](http://xpixel.group/2010/01/20/chaodong.html)<sup>1,2</sup>
<sup>1</sup>Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences<br><sup>2</sup>Shanghai AI Laboratory<br><sup>3</sup>The Chinese University of Hong Kong
<p align="center">
<img src="assets/teaser.png">
</p>
---
<p align="center">
<img src="assets/pipeline.png">
</p>
:star:If DiffBIR is helpful for you, please help star this repo. Thanks!:hugs:
## :book:Table Of Contents
- [Update](#update)
- [Visual Results On Real-world Images](#visual_results)
- [TODO](#todo)
- [Installation](#installation)
- [Pretrained Models](#pretrained_models)
- [Inference](#inference)
- [Train](#train)
## <a name="update"></a>:new:Update
- **2024.04.08**: ✅ Release everything about our [updated manuscript](https://arxiv.org/abs/2308.15070), including (1) a **new model** trained on subset of laion2b-en and (2) a **more readable code base**, etc. DiffBIR is now a general restoration pipeline that could handle different blind image restoration tasks with a unified generation module.
- **2023.09.19**: ✅ Add support for Apple Silicon! Check [installation_xOS.md](assets/docs/installation_xOS.md) to work with **CPU/CUDA/MPS** device!
- **2023.09.14**: ✅ Integrate a patch-based sampling strategy ([mixture-of-diffusers](https://github.com/albarji/mixture-of-diffusers)). [**Try it!**](#patch-based-sampling) Here is an [example](https://imgsli.com/MjA2MDA1) with a resolution of 2396 x 1596. GPU memory usage will continue to be optimized in the future and we are looking forward to your pull requests!
- **2023.09.14**: ✅ Add support for background upsampler (DiffBIR/[RealESRGAN](https://github.com/xinntao/Real-ESRGAN)) in face enhancement! :rocket: [**Try it!**](#inference_fr)
- **2023.09.13**: :rocket: Provide online demo (DiffBIR-official) in [OpenXLab](https://openxlab.org.cn/apps/detail/linxinqi/DiffBIR-official), which integrates both general model and face model. Please have a try! [camenduru](https://github.com/camenduru) also implements an online demo, thanks for his work.:hugs:
- **2023.09.12**: ✅ Upload inference code of latent image guidance and release [real47](inputs/real47) testset.
- **2023.09.08**: ✅ Add support for restoring unaligned faces.
- **2023.09.06**: :rocket: Update [colab demo](https://colab.research.google.com/github/camenduru/DiffBIR-colab/blob/main/DiffBIR_colab.ipynb). Thanks to [camenduru](https://github.com/camenduru)!:hugs:
- **2023.08.30**: This repo is released.
## <a name="visual_results"></a>:eyes:Visual Results On Real-world Images
### Blind Image Super-Resolution
[<img src="assets/visual_results/bsr6.png" height="223px"/>](https://imgsli.com/MTk5ODI3) [<img src="assets/visual_results/bsr7.png" height="223px"/>](https://imgsli.com/MTk5ODI4) [<img src="assets/visual_results/bsr4.png" height="223px"/>](https://imgsli.com/MTk5ODI1)
<!-- [<img src="assets/visual_results/bsr1.png" height="223px"/>](https://imgsli.com/MTk5ODIy) [<img src="assets/visual_results/bsr2.png" height="223px"/>](https://imgsli.com/MTk5ODIz)
[<img src="assets/visual_results/bsr3.png" height="223px"/>](https://imgsli.com/MTk5ODI0) [<img src="assets/visual_results/bsr5.png" height="223px"/>](https://imgsli.com/MjAxMjM0) -->
<!-- [<img src="assets/visual_results/bsr1.png" height="223px"/>](https://imgsli.com/MTk5ODIy) [<img src="assets/visual_results/bsr5.png" height="223px"/>](https://imgsli.com/MjAxMjM0) -->
### Blind Face Restoration
<!-- [<img src="assets/visual_results/bfr1.png" height="223px"/>](https://imgsli.com/MTk5ODI5) [<img src="assets/visual_results/bfr2.png" height="223px"/>](https://imgsli.com/MTk5ODMw) [<img src="assets/visual_results/bfr4.png" height="223px"/>](https://imgsli.com/MTk5ODM0) -->
[<img src="assets/visual_results/whole_image1.png" height="370"/>](https://imgsli.com/MjA2MTU0)
[<img src="assets/visual_results/whole_image2.png" height="370"/>](https://imgsli.com/MjA2MTQ4)
:star: Face and the background enhanced by DiffBIR.
### Blind Image Denoising
[<img src="assets/visual_results/bid1.png" height="215px"/>](https://imgsli.com/MjUzNzkz) [<img src="assets/visual_results/bid3.png" height="215px"/>](https://imgsli.com/MjUzNzky)
[<img src="assets/visual_results/bid2.png" height="215px"/>](https://imgsli.com/MjUzNzkx)
### 8x Blind Super-Resolution With Patch-based Sampling
> I often think of Bag End. I miss my books and my arm chair, and my garden. See, that's where I belong. That's home. --- Bilbo Baggins
[<img src="assets/visual_results/tiled_sampling.png" height="480px"/>](https://imgsli.com/MjUzODE4)
## <a name="todo"></a>:climbing:TODO
- [x] Release code and pretrained models :computer:.
- [x] Update links to paper and project page :link:.
- [x] Release real47 testset :minidisc:.
- [ ] Provide webui.
- [ ] Reduce the vram usage of DiffBIR :fire::fire::fire:.
- [ ] Provide HuggingFace demo :notebook:.
- [x] Add a patch-based sampling schedule :mag:.
- [x] Upload inference code of latent image guidance :page_facing_up:.
- [ ] Improve the performance :superhero:.
- [x] Support MPS acceleration for MacOS users.
- [ ] DiffBIR-turbo :fire::fire::fire:.
- [ ] Speed up inference, such as using fp16/bf16, torch.compile :fire::fire::fire:.
## <a name="installation"></a>:gear:Installation
```shell
# clone this repo
git clone https://github.com/XPixelGroup/DiffBIR.git
cd DiffBIR
# create environment
conda create -n diffbir python=3.10
conda activate diffbir
pip install -r requirements.txt
```
Our new code is based on pytorch 2.2.2 for the built-in support of memory-efficient attention. If you are working on a GPU that is not compatible with the latest pytorch, just downgrade pytorch to 1.13.1+cu116 and install xformers 0.0.16 as an alternative.
<!-- Note the installation is only compatible with **Linux** users. If you are working on different platforms, please check [xOS Installation](assets/docs/installation_xOS.md). -->
## <a name="pretrained_models"></a>:dna:Pretrained Models
Here we list pretrained weight of stage 2 model (IRControlNet) and our trained SwinIR, which was used for degradation removal during the training of stage 2 model.
| Model Name | Description | HuggingFace | BaiduNetdisk | OpenXLab |
| :---------: | :----------: | :----------: | :----------: | :----------: |
| v2.pth | IRControlNet trained on filtered laion2b-en | [download](https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v2.pth) | [download](https://pan.baidu.com/s/1uTAFl13xgGAzrnznAApyng?pwd=xiu3)<br>(pwd: xiu3) | [download](https://openxlab.org.cn/models/detail/linxinqi/DiffBIR/tree/main) |
| v1_general.pth | IRControlNet trained on ImageNet-1k | [download](https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v1_general.pth) | [download](https://pan.baidu.com/s/1PhXHAQSTOUX4Gy3MOc2t2Q?pwd=79n9)<br>(pwd: 79n9) | [download](https://openxlab.org.cn/models/detail/linxinqi/DiffBIR/tree/main) |
| v1_face.pth | IRControlNet trained on FFHQ | [download](https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v1_face.pth) | [download](https://pan.baidu.com/s/1kvM_SB1VbXjbipLxdzlI3Q?pwd=n7dx)<br>(pwd: n7dx) | [download](https://openxlab.org.cn/models/detail/linxinqi/DiffBIR/tree/main) |
| codeformer_swinir.ckpt | SwinIR trained on ImageNet-1k | [download](https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/codeformer_swinir.ckpt) | [download](https://pan.baidu.com/s/176fARg2ySYtDgX2vQOeRbA?pwd=vfif)<br>(pwd: vfif) | [download](https://openxlab.org.cn/models/detail/linxinqi/DiffBIR/tree/main) |
During inference, we use off-the-shelf models from other papers as the stage 1 model: [BSRNet](https://github.com/cszn/BSRGAN) for BSR, [SwinIR-Face](https://github.com/zsyOAOA/DifFace) used in DifFace for BFR, and [SCUNet-PSNR](https://github.com/cszn/SCUNet) for BID, while the trained IRControlNet remains **unchanged** for all tasks. Please check [code](utils/inference.py) for more details. Thanks for their work!
<!-- ## <a name="quick_start"></a>:flight_departure:Quick Start
Download [general_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) and [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) to `weights/`, then run the following command to interact with the gradio website.
```shell
python gradio_diffbir.py \
--ckpt weights/general_full_v1.ckpt \
--config configs/model/cldm.yaml \
--reload_swinir \
--swinir_ckpt weights/general_swinir_v1.ckpt \
--device cuda
```
<div align="center">
<kbd><img src="assets/gradio.png"></img></kbd>
</div> -->
## <a name="inference"></a>:crossed_swords:Inference
We provide some examples for inference, check [inference.py](inference.py) for more arguments. Pretrained weights will be **automatically downloaded**.
### Blind Image Super-Resolution
```shell
python -u inference.py \
--version v2 \
--task sr \
--upscale 4 \
--cfg_scale 4.0 \
--input inputs/demo/bsr \
--output results/demo_bsr \
--device cuda
```
### Blind Face Restoration
<a name="inference_fr"></a>
```shell
# for aligned face inputs
python -u inference.py \
--version v2 \
--task fr \
--upscale 1 \
--cfg_scale 4.0 \
--input inputs/demo/bfr/aligned \
--output results/demo_bfr_aligned \
--device cuda
```
```shell
# for unaligned face inputs
python -u inference.py \
--version v2 \
--task fr_bg \
--upscale 2 \
--cfg_scale 4.0 \
--input inputs/demo/bfr/whole_img \
--output results/demo_bfr_unaligned \
--device cuda
```
### Blind Image Denoising
```shell
python -u inference.py \
--version v2 \
--task dn \
--upscale 1 \
--cfg_scale 4.0 \
--input inputs/demo/bid \
--output results/demo_bid \
--device cuda
```
### Other options
#### Patch-based sampling
<a name="patch_based_sampling"></a>
Add the following arguments to enable patch-based sampling:
```shell
[command...] --tiled --tile_size 512 --tile_stride 256
```
Patch-based sampling supports super-resolution with a large scale factor. Our patch-based sampling is built upon [mixture-of-diffusers](https://github.com/albarji/mixture-of-diffusers). Thanks for their work!
#### Restoration Guidance
Restoration guidance is used to achieve a trade-off bwtween quality and fidelity. We default to closing it since we prefer quality rather than fidelity. Here is an example:
```shell
python -u inference.py \
--version v2 \
--task sr \
--upscale 4 \
--cfg_scale 4.0 \
--input inputs/demo/bsr \
--guidance --g_loss w_mse --g_scale 0.5 --g_space rgb \
--output results/demo_bsr_wg \
--device cuda
```
You will see that the results become more smooth.
#### Better Start Point For Sampling
Add the following argument to offer better start point for reverse sampling:
```shell
[command...] --better_start
```
This option prevents our model from generating noise in
image background.
## <a name="train"></a>:stars:Train
### Stage 1
First, we train a SwinIR, which will be used for degradation removal during the training of stage 2.
<a name="gen_file_list"></a>
1. Generate file list of training set and validation set, a file list looks like:
```txt
/path/to/image_1
/path/to/image_2
/path/to/image_3
...
```
You can write a simple python script or directly use shell command to produce file lists. Here is an example:
```shell
# collect all iamge files in img_dir
find [img_dir] -type f > files.list
# shuffle collected files
shuf files.list > files_shuf.list
# pick train_size files in the front as training set
head -n [train_size] files_shuf.list > files_shuf_train.list
# pick remaining files as validation set
tail -n +[train_size + 1] files_shuf.list > files_shuf_val.list
```
2. Fill in the [training configuration file](configs/train/train_stage1.yaml) with appropriate values.
3. Start training!
```shell
accelerate launch train_stage1.py --config configs/train/train_stage1.yaml
```
### Stage 2
1. Download pretrained [Stable Diffusion v2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) to provide generative capabilities. :bulb:: If you have ran the [inference script](inference.py), the SD v2.1 checkpoint can be found in [weights](weights).
```shell
wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt --no-check-certificate
```
2. Generate file list as mentioned [above](#gen_file_list). Currently, the training script of stage 2 doesn't support validation set, so you only need to create training file list.
3. Fill in the [training configuration file](configs/train/train_stage2.yaml) with appropriate values.
4. Start training!
```shell
accelerate launch train_stage2.py --config configs/train/train_stage2.yaml
```
## Citation
Please cite us if our work is useful for your research.
```
@misc{lin2024diffbir,
title={DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior},
author={Xinqi Lin and Jingwen He and Ziyan Chen and Zhaoyang Lyu and Bo Dai and Fanghua Yu and Wanli Ouyang and Yu Qiao and Chao Dong},
year={2024},
eprint={2308.15070},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## License
This project is released under the [Apache 2.0 license](LICENSE).
## Acknowledgement
This project is based on [ControlNet](https://github.com/lllyasviel/ControlNet) and [BasicSR](https://github.com/XPixelGroup/BasicSR). Thanks for their awesome work.
## Contact
If you have any questions, please feel free to contact with me at [email protected].
|