--- base_model: lvwerra/gpt2-imdb tags: - generated_from_trainer model-index: - name: gpt-imdb-jsd-beta_0.1 results: [] --- # gpt-imdb-jsd-beta_0.1 This model is a fine-tuned version of [lvwerra/gpt2-imdb](https://huggingface.co/lvwerra/gpt2-imdb) on an unknown dataset. It achieves the following results on the evaluation set: - Step: 7000 - Loss: 0.1422 - Rewards/chosen: -6.6308 - Rewards/rejected: -12.9931 - Rewards/accuracies: 0.9396 - Rewards/margins: 6.3623 - Logps/rejected: -393.6160 - Logps/chosen: -301.5730 - Logits/rejected: -40.9101 - Logits/chosen: -42.7380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 150 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2783 | 0.21 | 500 | 0.3575 | -1.6510 | -3.6200 | 0.8458 | 1.9690 | -299.8852 | -251.7749 | -34.0335 | -35.2131 | | 0.3254 | 0.42 | 1000 | 0.2845 | -2.6765 | -5.5357 | 0.8771 | 2.8593 | -319.0428 | -262.0301 | -41.3238 | -42.6399 | | 0.187 | 0.63 | 1500 | 0.2520 | -4.2045 | -7.9801 | 0.8875 | 3.7756 | -343.4868 | -277.3105 | -36.4710 | -37.8971 | | 0.2236 | 0.83 | 2000 | 0.1916 | -3.9591 | -8.0388 | 0.9313 | 4.0797 | -344.0737 | -274.8567 | -35.8180 | -37.3586 | | 0.1544 | 1.04 | 2500 | 0.1671 | -4.7747 | -9.4384 | 0.9333 | 4.6637 | -358.0689 | -283.0118 | -38.2421 | -39.6906 | | 0.285 | 1.25 | 3000 | 0.1728 | -5.7913 | -11.0242 | 0.9271 | 5.2329 | -373.9274 | -293.1786 | -39.8869 | -41.8088 | | 0.3249 | 1.46 | 3500 | 0.1585 | -5.3924 | -11.0092 | 0.9313 | 5.6168 | -373.7777 | -289.1895 | -41.4103 | -43.3052 | | 0.2288 | 1.67 | 4000 | 0.1544 | -5.7770 | -11.2642 | 0.9333 | 5.4872 | -376.3274 | -293.0356 | -39.3995 | -41.1619 | | 0.1367 | 1.88 | 4500 | 0.1463 | -5.6038 | -11.2632 | 0.9312 | 5.6594 | -376.3172 | -291.3033 | -38.0074 | -39.7695 | | 0.1596 | 2.08 | 5000 | 0.1489 | -6.3796 | -12.4737 | 0.9312 | 6.0941 | -388.4222 | -299.0610 | -39.8571 | -41.5072 | | 0.035 | 2.29 | 5500 | 0.1413 | -6.2472 | -12.4489 | 0.9375 | 6.2017 | -388.1746 | -297.7371 | -40.1165 | -41.9028 | | 0.1528 | 2.5 | 6000 | 0.1452 | -6.7167 | -13.0974 | 0.9354 | 6.3807 | -394.6590 | -302.4318 | -39.9707 | -41.8089 | | 0.1269 | 2.71 | 6500 | 0.1427 | -6.6508 | -13.0564 | 0.9458 | 6.4056 | -394.2490 | -301.7733 | -40.7866 | -42.6209 | | 0.2239 | 2.92 | 7000 | 0.1422 | -6.6308 | -12.9931 | 0.9396 | 6.3623 | -393.6160 | -301.5730 | -40.9101 | -42.7380 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.15.0