Upload folder using huggingface_hub
Browse files- quantize.py +4 -10
quantize.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
2 |
|
3 |
from llmcompressor.modifiers.quantization import QuantizationModifier
|
4 |
-
from llmcompressor
|
|
|
5 |
|
6 |
MODEL_ID = "llama-joycaption-beta-one-hf-llava"
|
7 |
|
@@ -17,17 +18,10 @@ processor = AutoProcessor.from_pretrained(MODEL_ID)
|
|
17 |
recipe = QuantizationModifier(
|
18 |
targets="Linear",
|
19 |
scheme="FP8_DYNAMIC",
|
20 |
-
ignore=["re:.*lm_head", "re
|
21 |
)
|
22 |
|
23 |
# Apply quantization and save to disk in compressed-tensors format.
|
24 |
SAVE_DIR = MODEL_ID + "-FP8-Dynamic"
|
25 |
-
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR)
|
26 |
processor.save_pretrained(SAVE_DIR)
|
27 |
-
|
28 |
-
# Confirm generations of the quantized model look sane.
|
29 |
-
print("========== SAMPLE GENERATION ==============")
|
30 |
-
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
|
31 |
-
output = model.generate(input_ids, max_new_tokens=20)
|
32 |
-
print(processor.decode(output[0]))
|
33 |
-
print("==========================================")
|
|
|
1 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
2 |
|
3 |
from llmcompressor.modifiers.quantization import QuantizationModifier
|
4 |
+
from llmcompressor import oneshot
|
5 |
+
from llmcompressor.utils import dispatch_for_generation
|
6 |
|
7 |
MODEL_ID = "llama-joycaption-beta-one-hf-llava"
|
8 |
|
|
|
18 |
recipe = QuantizationModifier(
|
19 |
targets="Linear",
|
20 |
scheme="FP8_DYNAMIC",
|
21 |
+
ignore=["re:.*lm_head", "re:.*multi_modal_projector.*", "re:.*vision_tower.*"],
|
22 |
)
|
23 |
|
24 |
# Apply quantization and save to disk in compressed-tensors format.
|
25 |
SAVE_DIR = MODEL_ID + "-FP8-Dynamic"
|
26 |
+
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR, save_compressed=True)
|
27 |
processor.save_pretrained(SAVE_DIR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|