NilayR commited on
Commit
5c587a9
·
verified ·
1 Parent(s): 444f20e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -164
README.md CHANGED
@@ -1,199 +1,138 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: meta-llama/Llama-3.2-1B-Instruct
4
+ tags:
5
+ - dpo
6
+ - lora
7
+ - peft
8
+ - llama-3.2
9
+ - llm-judge
10
+ library_name: peft
11
  ---
12
 
13
+ # DPO Fine-Tune of Llama-3.2-1B using an LLM Judge
14
 
15
+ This repository contains the LoRA adapters for a `meta-llama/Llama-3.2-1B-Instruct` model that has been fine-tuned using Direct Preference Optimization (DPO).
16
 
17
+ The preference dataset for this training was generated using a custom-built **LLM Judge** powered by GPT-3.5-Turbo. The judge was designed to evaluate pairs of model-generated responses based on a clear set of criteria, creating a high-quality dataset for preference alignment.
18
 
19
+ - **Preference Dataset:** [NilayR/llm-judge-preferences-llama32](https://huggingface.co/datasets/NilayR/llm-judge-preferences-llama32)
20
 
21
  ## Model Details
22
 
23
  ### Model Description
24
 
25
+ This model is a fine-tuned version of `meta-llama/Llama-3.2-1B-Instruct`. It was trained using DPO on a dataset of 483 preference pairs. These pairs were created by having the base model generate multiple responses to instructions from the LIMA dataset, which were then evaluated and ranked by a GPT-3.5-Turbo-based LLM Judge.
26
 
27
+ The goal of this fine-tuning was to align the model more closely with human-like preferences for helpfulness, accuracy, and clarity, as defined by the judge's evaluation criteria. This model demonstrated the best performance in a comparative analysis against the base model and a model trained with PairRM data.
28
 
29
+ - **Developed by:** NilayR
30
+ - **Model type:** Causal Language Model
31
+ - **Language(s):** English
32
+ - **License:** apache-2.0
33
+ - **Finetuned from model:** `meta-llama/Llama-3.2-1B-Instruct`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  ## How to Get Started with the Model
36
 
37
+ To use these LoRA adapters, load the base model (`meta-llama/Llama-3.2-1B-Instruct`) and then apply the adapters from this repository.
38
+
39
+ ```python
40
+ import torch
41
+ from peft import PeftModel
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
43
+
44
+ # Set base model ID and adapter path
45
+ base_model_id = "meta-llama/Llama-3.2-1B-Instruct"
46
+ adapter_id = "NilayR/llama32-dpo-llm-judge"
47
+
48
+ # Configure BitsAndBytes for 4-bit quantization
49
+ bnb_config = BitsAndBytesConfig(
50
+ load_in_4bit=True,
51
+ bnb_4bit_quant_type="nf4",
52
+ bnb_4bit_compute_dtype=torch.bfloat16
53
+ )
54
+
55
+ # Load the base model with quantization
56
+ base_model = AutoModelForCausalLM.from_pretrained(
57
+ base_model_id,
58
+ quantization_config=bnb_config,
59
+ device_map="auto",
60
+ trust_remote_code=True,
61
+ )
62
+
63
+ # Load the tokenizer
64
+ tokenizer = AutoTokenizer.from_pretrained(base_model_id)
65
+ tokenizer.pad_token = tokenizer.eos_token
66
+
67
+ # Load and apply the PEFT adapters
68
+ model = PeftModel.from_pretrained(base_model, adapter_id)
69
+
70
+ # --- Generate a response ---
71
+ prompt = "Explain the concept of dark matter and dark energy in simple terms."
72
+ messages = [
73
+ {"role": "system", "content": "You are a helpful assistant."},
74
+ {"role": "user", "content": prompt}
75
+ ]
76
+
77
+ input_ids = tokenizer.apply_chat_template(
78
+ messages,
79
+ add_generation_prompt=True,
80
+ return_tensors="pt"
81
+ ).to(model.device)
82
+
83
+ outputs = model.generate(
84
+ input_ids,
85
+ max_new_tokens=200,
86
+ do_sample=True,
87
+ temperature=0.7,
88
+ top_p=0.95
89
+ )
90
+
91
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
92
+ print(response.split("assistant")[-1].strip())
93
+ ````
94
 
95
  ## Training Details
96
 
97
  ### Training Data
98
 
99
+ The model was trained on a preference dataset generated using a custom LLM Judge.
100
 
101
+ * **Data Generation Process:**
102
+ 1. **Instructions:** 50 instructions were extracted from the LIMA dataset.
103
+ 2. **Response Generation:** The base `Llama-3.2-1B` model generated 5 diverse responses for each instruction.
104
+ 3. **Preference Labeling:** A custom LLM Judge powered by `GPT-3.5-Turbo` evaluated all possible pairs of responses for each instruction, resulting in a dataset of **483 chosen/rejected pairs**.
105
 
106
  ### Training Procedure
107
 
108
+ The model was trained for one epoch using the TRL library's `DPOTrainer`.
 
 
 
 
 
109
 
110
  #### Training Hyperparameters
111
 
112
+ * **Framework:** `trl.DPOTrainer`
113
+ * **Epochs:** 1
114
+ * **Batch Size:** 1
115
+ * **Gradient Accumulation Steps:** 4 (Effective Batch Size: 4)
116
+ * **Optimizer:** `paged_adamw_8bit`
117
+ * **Learning Rate:** 5e-5
118
+ * **LR Scheduler:** `cosine` with a warmup ratio of 0.1
119
+ * **DPO Beta (β):** 0.1
120
+ * **Final Training Loss:** `0.5545`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
+ #### LoRA Configuration
123
 
124
+ * **Rank (`r`):** 16
125
+ * **Alpha (`lora_alpha`):** 32
126
+ * **Target Modules:** `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj`
127
+ * **Dropout:** 0.05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
  ### Compute Infrastructure
130
 
131
+ * **Hardware:** 1x NVIDIA A100 40GB GPU
132
+ * **Cloud Provider:** Google Colab
133
+ * **Software:** `transformers`, `peft`, `trl`, `bitsandbytes`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
+ -----
136
 
137
+ ```
138
+ ```