Update README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,9 @@
|
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
- code
|
|
|
|
|
|
|
5 |
license: apache-2.0
|
6 |
datasets:
|
7 |
- gretelai/synthetic_text_to_sql
|
@@ -38,11 +41,12 @@ Due to its lightweight architecture, this model can be deployed efficiently on l
|
|
38 |
You can load the model using 🤗 Transformers:
|
39 |
|
40 |
```python
|
41 |
-
from
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
45 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
46 |
|
47 |
prompt = "Write a SQL query to get the total revenue from the sales table."
|
48 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
- code
|
5 |
+
- peft
|
6 |
+
- sql-generation
|
7 |
+
- text-generation-inference
|
8 |
license: apache-2.0
|
9 |
datasets:
|
10 |
- gretelai/synthetic_text_to_sql
|
|
|
41 |
You can load the model using 🤗 Transformers:
|
42 |
|
43 |
```python
|
44 |
+
from peft import AutoPeftModelForCausalLM
|
45 |
+
from transformers import AutoTokenizer
|
46 |
+
import torch
|
47 |
|
48 |
+
model = AutoPeftModelForCausalLM.from_pretrained("NotShrirang/DeepSeek-R1-Distill-Qwen-1.5B-SQL-Coder-PEFT")
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("NotShrirang/DeepSeek-R1-Distill-Qwen-1.5B-SQL-Coder-PEFT")
|
|
|
50 |
|
51 |
prompt = "Write a SQL query to get the total revenue from the sales table."
|
52 |
inputs = tokenizer(prompt, return_tensors="pt")
|