|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | from typing import Union | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVisionConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to | 
					
						
						|  | instantiate a vision encoder according to the specified arguments, defining the model architecture. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | num_channels (`int`, *optional*, defaults to 3): | 
					
						
						|  | Number of color channels in the input images (e.g., 3 for RGB). | 
					
						
						|  | patch_size (`int`, *optional*, defaults to 14): | 
					
						
						|  | The size (resolution) of each patch. | 
					
						
						|  | image_size (`int`, *optional*, defaults to 224): | 
					
						
						|  | The size (resolution) of each image. | 
					
						
						|  | qkv_bias (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to add a bias to the queries and values in the self-attention layers. | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 3200): | 
					
						
						|  | Dimensionality of the encoder layers and the pooler layer. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 25): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 12800): | 
					
						
						|  | Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | 
					
						
						|  | qk_normalization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to normalize the queries and keys in the self-attention layers. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 48): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | use_flash_attn (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to use flash attention mechanism. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | 
					
						
						|  | `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. | 
					
						
						|  | layer_norm_eps (`float`, *optional*, defaults to 1e-6): | 
					
						
						|  | The epsilon used by the layer normalization layers. | 
					
						
						|  | dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | 
					
						
						|  | drop_path_rate (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Dropout rate for stochastic depth. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | initializer_factor (`float`, *optional*, defaults to 0.1): | 
					
						
						|  | A factor for layer scale. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_type = 'intern_vit_6b' | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_channels=3, | 
					
						
						|  | patch_size=14, | 
					
						
						|  | image_size=224, | 
					
						
						|  | qkv_bias=False, | 
					
						
						|  | hidden_size=3200, | 
					
						
						|  | num_attention_heads=25, | 
					
						
						|  | intermediate_size=12800, | 
					
						
						|  | qk_normalization=True, | 
					
						
						|  | num_hidden_layers=48, | 
					
						
						|  | use_flash_attn=True, | 
					
						
						|  | hidden_act='gelu', | 
					
						
						|  | norm_type='rms_norm', | 
					
						
						|  | layer_norm_eps=1e-6, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | drop_path_rate=0.0, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | initializer_factor=0.1, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.dropout = dropout | 
					
						
						|  | self.drop_path_rate = drop_path_rate | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.num_channels = num_channels | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.image_size = image_size | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.initializer_factor = initializer_factor | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.layer_norm_eps = layer_norm_eps | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.norm_type = norm_type | 
					
						
						|  | self.qkv_bias = qkv_bias | 
					
						
						|  | self.qk_normalization = qk_normalization | 
					
						
						|  | self.use_flash_attn = use_flash_attn | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': | 
					
						
						|  | config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | if 'vision_config' in config_dict: | 
					
						
						|  | config_dict = config_dict['vision_config'] | 
					
						
						|  |  | 
					
						
						|  | if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | 
					
						
						|  | f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return cls.from_dict(config_dict, **kwargs) | 
					
						
						|  |  |