File size: 9,783 Bytes
a30ee77 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 26a8ea5 2b395f2 f35bff2 26a8ea5 2b395f2 f35bff2 38a6b6a 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 832348e 2b395f2 832348e 2b395f2 fa5b1e0 2b395f2 fa5b1e0 9aa7ba0 fa5b1e0 a30ee77 fa5b1e0 2b395f2 832348e 2b395f2 832348e 2b395f2 832348e 6ce20d9 2b395f2 832348e 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 38a6b6a 2b395f2 38a6b6a 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 6ce20d9 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 26a8ea5 2b395f2 f35bff2 6ce20d9 832348e 2b395f2 6ce20d9 832348e 2b395f2 832348e 2b395f2 832348e 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 f35bff2 2b395f2 832348e 2b395f2 832348e 2b395f2 832348e 2b395f2 832348e 2b395f2 832348e 2b395f2 832348e 2b395f2 832348e 2b395f2 f35bff2 832348e 2b395f2 832348e f35bff2 2b395f2 f35bff2 832348e f35bff2 2b395f2 f35bff2 fa5b1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
---
tags:
- FRED
- ECONOMIC
- ML
---
# FRED ML - Federal Reserve Economic Data Machine Learning System
A comprehensive Machine Learning system for analyzing Federal Reserve Economic Data (FRED) with automated data processing, advanced analytics, and interactive visualizations.
## 🚀 Features
### Core Capabilities
- **📊 Real-time Data Processing**: Automated FRED API integration with enhanced client
- **🔍 Data Quality Assessment**: Comprehensive data validation and quality metrics
- **🔄 Automated Workflows**: CI/CD pipeline with quality gates
- **☁️ Cloud-Native**: AWS Lambda and S3 integration
- **🧪 Comprehensive Testing**: Unit, integration, and E2E tests
### Advanced Analytics
- **🤖 Statistical Modeling**:
- Linear regression with lagged variables
- Correlation analysis (Pearson, Spearman, Kendall)
- Granger causality testing
- Comprehensive diagnostic testing (normality, homoscedasticity, autocorrelation, multicollinearity)
- Principal Component Analysis (PCA)
- **🔮 Time Series Forecasting**:
- ARIMA models with automatic order selection
- Exponential Smoothing (ETS) models
- Stationarity testing (ADF, KPSS)
- Time series decomposition (trend, seasonal, residual)
- Backtesting with performance metrics (MAE, RMSE, MAPE)
- Confidence intervals and uncertainty quantification
- **🎯 Economic Segmentation**:
- Time period clustering (economic regimes)
- Series clustering (behavioral patterns)
- K-means and hierarchical clustering
- Optimal cluster detection (elbow method, silhouette analysis)
- Dimensionality reduction (PCA, t-SNE)
- **📈 Interactive Visualizations**: Dynamic charts and dashboards
- **💡 Comprehensive Insights**: Automated insights extraction and key findings identification
## 📁 Project Structure
```
FRED_ML/
├── 📁 src/ # Core application code
│ ├── 📁 core/ # Core pipeline components
│ ├── 📁 analysis/ # Economic analysis modules
│ ├── 📁 visualization/ # Data visualization components
│ └── 📁 lambda/ # AWS Lambda functions
├── 📁 scripts/ # Utility and demo scripts
│ ├── 📄 streamlit_demo.py # Interactive Streamlit demo
│ ├── 📄 run_tests.py # Test runner
│ └── 📄 simple_demo.py # Command-line demo
├── 📁 tests/ # Comprehensive test suite
│ ├── 📁 unit/ # Unit tests
│ ├── 📁 integration/ # Integration tests
│ └── 📁 e2e/ # End-to-end tests
├── 📁 docs/ # Documentation
│ ├── 📁 api/ # API documentation
│ ├── 📁 architecture/ # System architecture docs
│ └── 📄 CONVERSATION_SUMMARY.md
├── 📁 config/ # Configuration files
├── 📁 data/ # Data storage
│ ├── 📁 raw/ # Raw data files
│ ├── 📁 processed/ # Processed data
│ └── 📁 exports/ # Generated exports
├── 📁 deploy/ # Deployment configurations
│ ├── 📁 docker/ # Docker configurations
│ ├── 📁 kubernetes/ # Kubernetes manifests
│ └── 📁 helm/ # Helm charts
├── 📁 infrastructure/ # Infrastructure as code
│ ├── 📁 ci-cd/ # CI/CD configurations
│ ├── 📁 monitoring/ # Monitoring setup
│ └── 📁 alerts/ # Alert configurations
├── 📁 .github/workflows/ # GitHub Actions workflows
├── 📄 requirements.txt # Python dependencies
├── 📄 pyproject.toml # Project configuration
├── 📄 Dockerfile # Container configuration
├── 📄 Makefile # Build automation
└── 📄 README.md # This file
```
## 🛠️ Quick Start
### Prerequisites
- Python 3.8+
- AWS Account (for cloud features)
- FRED API Key
### Installation
1. **Clone the repository**
You can clone from any of the following remotes:
```bash
# EAName GitHub
git clone https://github.com/EAName/FREDML.git
# ParallelLLC GitHub
git clone https://github.com/ParallelLLC/FREDML.git
# esalguero Hugging Face
git clone https://huggingface.co/esalguero/FREDML
# ParallelLLC Hugging Face
git clone https://huggingface.co/ParallelLLC/FREDML
```
cd FRED_ML
```
2. **Install dependencies**
```bash
pip install -r requirements.txt
```
3. **Set up environment variables**
```bash
export AWS_ACCESS_KEY_ID="your_access_key"
export AWS_SECRET_ACCESS_KEY="your_secret_key"
export AWS_DEFAULT_REGION="us-east-1"
export FRED_API_KEY="your_fred_api_key"
```
4. **Set up FRED API (Optional but Recommended)**
```bash
# Run setup wizard
python frontend/setup_fred.py
# Test your FRED API key
python frontend/test_fred_api.py
```
5. **Run the interactive demo**
```bash
streamlit run scripts/streamlit_demo.py
```
## 🧪 Testing
### Run all tests
```bash
python scripts/run_tests.py
```
### Run specific test types
```bash
# Unit tests
python -m pytest tests/unit/
# Integration tests
python -m pytest tests/integration/
# End-to-end tests
python -m pytest tests/e2e/
```
### Development testing
```bash
python scripts/test_dev.py
```
## 🚀 Deployment
### Local Development
```bash
# Start development environment
python scripts/dev_setup.py
# Run development tests
python scripts/run_dev_tests.py
```
### Streamlit Cloud Deployment (Free)
```bash
# 1. Push to GitHub
git add .
git commit -m "Prepare for Streamlit Cloud deployment"
git push origin main
# 2. Deploy to Streamlit Cloud
# Go to https://share.streamlit.io/
# Connect your GitHub repository
# Set main file path to: streamlit_app.py
# Add environment variables for FRED_API_KEY and AWS credentials
```
### Production Deployment
```bash
# Deploy to AWS
python scripts/deploy_aws.py
# Deploy complete system
python scripts/deploy_complete.py
```
## 📊 Demo Applications
### Interactive Streamlit Demo
```bash
streamlit run scripts/streamlit_demo.py
```
Access at: http://localhost:8501
### Command-line Demo
```bash
python scripts/simple_demo.py
```
### Advanced Analytics Demo
```bash
# Run comprehensive analytics demo
python scripts/comprehensive_demo.py
# Run advanced analytics pipeline
python scripts/run_advanced_analytics.py --indicators GDPC1 INDPRO RSAFS --forecast-periods 4
# Run with custom parameters
python scripts/run_advanced_analytics.py \
--indicators GDPC1 INDPRO RSAFS CPIAUCSL FEDFUNDS DGS10 \
--start-date 2010-01-01 \
--end-date 2024-01-01 \
--forecast-periods 8 \
--output-dir data/exports/advanced_analysis
```
## 🔧 Configuration
### Real vs Demo Data
The application supports two modes:
#### 🎯 Real FRED Data (Recommended)
- **Requires**: Free FRED API key from https://fred.stlouisfed.org/docs/api/api_key.html
- **Features**: Live economic data, real-time insights, actual forecasts
- **Setup**:
```bash
export FRED_API_KEY="your-actual-api-key"
python frontend/test_fred_api.py # Test your key
```
#### 📊 Demo Data (Fallback)
- **Features**: Realistic economic data for demonstration
- **Use case**: When API key is not available or for testing
- **Data**: Generated based on historical patterns and economic principles
### Environment Variables
- `AWS_ACCESS_KEY_ID`: AWS access key
- `AWS_SECRET_ACCESS_KEY`: AWS secret key
- `AWS_DEFAULT_REGION`: AWS region (default: us-east-1)
- `FRED_API_KEY`: FRED API key (get free key from FRED website)
### Configuration Files
- `config/pipeline.yaml`: Pipeline configuration
- `config/settings.py`: Application settings
## 📈 System Architecture
### Components
- **Frontend**: Streamlit interactive dashboard
- **Backend**: AWS Lambda serverless functions
- **Storage**: AWS S3 for data persistence
- **Scheduling**: EventBridge for automated triggers
- **Data Source**: FRED API for economic indicators
### Data Flow
```
FRED API → AWS Lambda → S3 Storage → Streamlit Dashboard
↓
EventBridge (Scheduling)
↓
CloudWatch (Monitoring)
```
## 🧪 Testing Strategy
### Test Types
- **Unit Tests**: Individual component testing
- **Integration Tests**: API and data flow testing
- **End-to-End Tests**: Complete system workflow testing
### Coverage
- Core pipeline components: 100%
- API integrations: 100%
- Data processing: 100%
- Visualization components: 100%
## 🔄 CI/CD Pipeline
### GitHub Actions Workflows
- **Main Pipeline**: Production deployments
- **Pull Request Checks**: Code quality validation
- **Scheduled Maintenance**: Automated updates
- **Release Management**: Version control
### Quality Gates
- Automated testing
- Code linting and formatting
- Security vulnerability scanning
- Documentation generation
## 📚 Documentation
- [API Documentation](docs/api/)
- [Architecture Guide](docs/architecture/)
- [Deployment Guide](docs/deployment/)
- [User Guide](docs/user-guide/)
- [Conversation Summary](docs/CONVERSATION_SUMMARY.md)
## 🤝 Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Run tests: `python scripts/run_tests.py`
5. Submit a pull request
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🆘 Support
For support and questions:
- Create an issue on GitHub
- Check the [documentation](docs/)
- Review the [conversation summary](docs/CONVERSATION_SUMMARY.md)
---
**FRED ML** - Transforming economic data analysis with machine learning and automation.
|