File size: 9,783 Bytes
a30ee77
 
 
 
 
 
2b395f2
f35bff2
2b395f2
f35bff2
2b395f2
f35bff2
26a8ea5
 
 
2b395f2
 
 
f35bff2
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
f35bff2
 
38a6b6a
2b395f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35bff2
 
2b395f2
f35bff2
2b395f2
f35bff2
2b395f2
 
 
832348e
2b395f2
832348e
2b395f2
fa5b1e0
2b395f2
fa5b1e0
 
 
 
9aa7ba0
fa5b1e0
 
a30ee77
fa5b1e0
 
 
 
 
2b395f2
832348e
2b395f2
 
 
 
832348e
2b395f2
 
 
 
 
 
 
832348e
6ce20d9
 
 
 
 
 
 
 
 
 
2b395f2
 
 
832348e
2b395f2
f35bff2
2b395f2
f35bff2
2b395f2
38a6b6a
 
2b395f2
38a6b6a
2b395f2
 
f35bff2
2b395f2
 
f35bff2
2b395f2
 
f35bff2
 
2b395f2
 
 
 
f35bff2
2b395f2
f35bff2
2b395f2
 
 
 
f35bff2
2b395f2
 
 
f35bff2
6ce20d9
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
 
 
 
f35bff2
2b395f2
 
 
f35bff2
2b395f2
f35bff2
2b395f2
 
 
 
 
f35bff2
2b395f2
 
 
 
f35bff2
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
f35bff2
6ce20d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832348e
2b395f2
 
 
6ce20d9
832348e
2b395f2
 
 
832348e
2b395f2
832348e
2b395f2
 
 
 
 
 
f35bff2
2b395f2
 
 
 
 
 
 
 
f35bff2
2b395f2
f35bff2
2b395f2
 
 
 
832348e
2b395f2
 
 
 
 
832348e
2b395f2
832348e
2b395f2
 
 
 
 
832348e
2b395f2
 
 
 
 
832348e
2b395f2
832348e
2b395f2
 
 
 
 
832348e
2b395f2
f35bff2
832348e
 
 
2b395f2
832348e
f35bff2
2b395f2
f35bff2
832348e
f35bff2
2b395f2
 
 
 
 
 
 
 
f35bff2
fa5b1e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
---
tags:
- FRED
- ECONOMIC
- ML
---
# FRED ML - Federal Reserve Economic Data Machine Learning System

A comprehensive Machine Learning system for analyzing Federal Reserve Economic Data (FRED) with automated data processing, advanced analytics, and interactive visualizations.

## 🚀 Features

### Core Capabilities
- **📊 Real-time Data Processing**: Automated FRED API integration with enhanced client
- **🔍 Data Quality Assessment**: Comprehensive data validation and quality metrics
- **🔄 Automated Workflows**: CI/CD pipeline with quality gates
- **☁️ Cloud-Native**: AWS Lambda and S3 integration
- **🧪 Comprehensive Testing**: Unit, integration, and E2E tests

### Advanced Analytics
- **🤖 Statistical Modeling**: 
  - Linear regression with lagged variables
  - Correlation analysis (Pearson, Spearman, Kendall)
  - Granger causality testing
  - Comprehensive diagnostic testing (normality, homoscedasticity, autocorrelation, multicollinearity)
  - Principal Component Analysis (PCA)

- **🔮 Time Series Forecasting**:
  - ARIMA models with automatic order selection
  - Exponential Smoothing (ETS) models
  - Stationarity testing (ADF, KPSS)
  - Time series decomposition (trend, seasonal, residual)
  - Backtesting with performance metrics (MAE, RMSE, MAPE)
  - Confidence intervals and uncertainty quantification

- **🎯 Economic Segmentation**:
  - Time period clustering (economic regimes)
  - Series clustering (behavioral patterns)
  - K-means and hierarchical clustering
  - Optimal cluster detection (elbow method, silhouette analysis)
  - Dimensionality reduction (PCA, t-SNE)

- **📈 Interactive Visualizations**: Dynamic charts and dashboards
- **💡 Comprehensive Insights**: Automated insights extraction and key findings identification

## 📁 Project Structure

```
FRED_ML/
├── 📁 src/                    # Core application code
│   ├── 📁 core/              # Core pipeline components
│   ├── 📁 analysis/          # Economic analysis modules
│   ├── 📁 visualization/     # Data visualization components
│   └── 📁 lambda/           # AWS Lambda functions
├── 📁 scripts/               # Utility and demo scripts
│   ├── 📄 streamlit_demo.py  # Interactive Streamlit demo
│   ├── 📄 run_tests.py       # Test runner
│   └── 📄 simple_demo.py     # Command-line demo
├── 📁 tests/                 # Comprehensive test suite
│   ├── 📁 unit/             # Unit tests
│   ├── 📁 integration/      # Integration tests
│   └── 📁 e2e/              # End-to-end tests
├── 📁 docs/                  # Documentation
│   ├── 📁 api/              # API documentation
│   ├── 📁 architecture/     # System architecture docs
│   └── 📄 CONVERSATION_SUMMARY.md
├── 📁 config/               # Configuration files
├── 📁 data/                 # Data storage
│   ├── 📁 raw/             # Raw data files
│   ├── 📁 processed/       # Processed data
│   └── 📁 exports/         # Generated exports
├── 📁 deploy/               # Deployment configurations
│   ├── 📁 docker/          # Docker configurations
│   ├── 📁 kubernetes/      # Kubernetes manifests
│   └── 📁 helm/            # Helm charts
├── 📁 infrastructure/       # Infrastructure as code
│   ├── 📁 ci-cd/          # CI/CD configurations
│   ├── 📁 monitoring/      # Monitoring setup
│   └── 📁 alerts/          # Alert configurations
├── 📁 .github/workflows/    # GitHub Actions workflows
├── 📄 requirements.txt      # Python dependencies
├── 📄 pyproject.toml       # Project configuration
├── 📄 Dockerfile           # Container configuration
├── 📄 Makefile             # Build automation
└── 📄 README.md            # This file
```

## 🛠️ Quick Start

### Prerequisites

- Python 3.8+
- AWS Account (for cloud features)
- FRED API Key

### Installation

1. **Clone the repository**
   You can clone from any of the following remotes:
   ```bash
   # EAName GitHub
   git clone https://github.com/EAName/FREDML.git
   
   # ParallelLLC GitHub
   git clone https://github.com/ParallelLLC/FREDML.git

   # esalguero Hugging Face
   git clone https://huggingface.co/esalguero/FREDML

   # ParallelLLC Hugging Face
   git clone https://huggingface.co/ParallelLLC/FREDML
   ```
   cd FRED_ML
   ```

2. **Install dependencies**
   ```bash
   pip install -r requirements.txt
   ```

3. **Set up environment variables**
   ```bash
   export AWS_ACCESS_KEY_ID="your_access_key"
   export AWS_SECRET_ACCESS_KEY="your_secret_key"
   export AWS_DEFAULT_REGION="us-east-1"
   export FRED_API_KEY="your_fred_api_key"
   ```

4. **Set up FRED API (Optional but Recommended)**
   ```bash
   # Run setup wizard
   python frontend/setup_fred.py
   
   # Test your FRED API key
   python frontend/test_fred_api.py
   ```

5. **Run the interactive demo**
   ```bash
   streamlit run scripts/streamlit_demo.py
   ```

## 🧪 Testing

### Run all tests
```bash
python scripts/run_tests.py
```

### Run specific test types
```bash
# Unit tests
python -m pytest tests/unit/

# Integration tests
python -m pytest tests/integration/

# End-to-end tests
python -m pytest tests/e2e/
```

### Development testing
```bash
python scripts/test_dev.py
```

## 🚀 Deployment

### Local Development
```bash
# Start development environment
python scripts/dev_setup.py

# Run development tests
python scripts/run_dev_tests.py
```

### Streamlit Cloud Deployment (Free)
```bash
# 1. Push to GitHub
git add .
git commit -m "Prepare for Streamlit Cloud deployment"
git push origin main

# 2. Deploy to Streamlit Cloud
# Go to https://share.streamlit.io/
# Connect your GitHub repository
# Set main file path to: streamlit_app.py
# Add environment variables for FRED_API_KEY and AWS credentials
```

### Production Deployment
```bash
# Deploy to AWS
python scripts/deploy_aws.py

# Deploy complete system
python scripts/deploy_complete.py
```

## 📊 Demo Applications

### Interactive Streamlit Demo
```bash
streamlit run scripts/streamlit_demo.py
```
Access at: http://localhost:8501

### Command-line Demo
```bash
python scripts/simple_demo.py
```

### Advanced Analytics Demo
```bash
# Run comprehensive analytics demo
python scripts/comprehensive_demo.py

# Run advanced analytics pipeline
python scripts/run_advanced_analytics.py --indicators GDPC1 INDPRO RSAFS --forecast-periods 4

# Run with custom parameters
python scripts/run_advanced_analytics.py \
  --indicators GDPC1 INDPRO RSAFS CPIAUCSL FEDFUNDS DGS10 \
  --start-date 2010-01-01 \
  --end-date 2024-01-01 \
  --forecast-periods 8 \
  --output-dir data/exports/advanced_analysis
```

## 🔧 Configuration

### Real vs Demo Data

The application supports two modes:

#### 🎯 Real FRED Data (Recommended)
- **Requires**: Free FRED API key from https://fred.stlouisfed.org/docs/api/api_key.html
- **Features**: Live economic data, real-time insights, actual forecasts
- **Setup**: 
  ```bash
  export FRED_API_KEY="your-actual-api-key"
  python frontend/test_fred_api.py  # Test your key
  ```

#### 📊 Demo Data (Fallback)
- **Features**: Realistic economic data for demonstration
- **Use case**: When API key is not available or for testing
- **Data**: Generated based on historical patterns and economic principles

### Environment Variables
- `AWS_ACCESS_KEY_ID`: AWS access key
- `AWS_SECRET_ACCESS_KEY`: AWS secret key
- `AWS_DEFAULT_REGION`: AWS region (default: us-east-1)
- `FRED_API_KEY`: FRED API key (get free key from FRED website)

### Configuration Files
- `config/pipeline.yaml`: Pipeline configuration
- `config/settings.py`: Application settings

## 📈 System Architecture

### Components
- **Frontend**: Streamlit interactive dashboard
- **Backend**: AWS Lambda serverless functions
- **Storage**: AWS S3 for data persistence
- **Scheduling**: EventBridge for automated triggers
- **Data Source**: FRED API for economic indicators

### Data Flow
```
FRED API → AWS Lambda → S3 Storage → Streamlit Dashboard

        EventBridge (Scheduling)

        CloudWatch (Monitoring)
```

## 🧪 Testing Strategy

### Test Types
- **Unit Tests**: Individual component testing
- **Integration Tests**: API and data flow testing
- **End-to-End Tests**: Complete system workflow testing

### Coverage
- Core pipeline components: 100%
- API integrations: 100%
- Data processing: 100%
- Visualization components: 100%

## 🔄 CI/CD Pipeline

### GitHub Actions Workflows
- **Main Pipeline**: Production deployments
- **Pull Request Checks**: Code quality validation
- **Scheduled Maintenance**: Automated updates
- **Release Management**: Version control

### Quality Gates
- Automated testing
- Code linting and formatting
- Security vulnerability scanning
- Documentation generation

## 📚 Documentation

- [API Documentation](docs/api/)
- [Architecture Guide](docs/architecture/)
- [Deployment Guide](docs/deployment/)
- [User Guide](docs/user-guide/)
- [Conversation Summary](docs/CONVERSATION_SUMMARY.md)

## 🤝 Contributing

1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Run tests: `python scripts/run_tests.py`
5. Submit a pull request

## 📄 License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 🆘 Support

For support and questions:
- Create an issue on GitHub
- Check the [documentation](docs/)
- Review the [conversation summary](docs/CONVERSATION_SUMMARY.md)

---

**FRED ML** - Transforming economic data analysis with machine learning and automation.