File size: 100,802 Bytes
80c865b 6862a3f 80c865b 35afb09 80c865b 35afb09 80c865b 35afb09 80c865b 35afb09 80c865b 6862a3f 80c865b 6862a3f 80c865b 6862a3f 80c865b 6862a3f 80c865b 35afb09 80c865b 35afb09 80c865b 35afb09 80c865b 35afb09 80c865b 35afb09 80c865b 35afb09 80c865b 35afb09 80c865b 35afb09 80c865b 6862a3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 |
from __future__ import annotations
from collections import defaultdict
from typing import Any, NewType, Union, TypedDict
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import PIL.Image
from transformers import (
AutoTokenizer,
BatchFeature,
Cache,
Qwen3Config,
Qwen3ForCausalLM,
Qwen3PreTrainedModel,
)
from transformers.cache_utils import SlidingWindowCache, StaticCache
from transformers.generation.utils import GenerationMixin
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.models.qwen3.modeling_qwen3 import Qwen3DecoderLayer, Qwen3Model
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils import TensorType
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
import re
from transformers.models.siglip2.modeling_siglip2 import (
Siglip2MLP,
)
from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig
import itertools
from collections.abc import Callable, Iterable
import heapq
from collections.abc import Callable, Iterable
from dataclasses import dataclass, field, fields, replace
from enum import Enum
from torch.profiler import record_function
class ModalityType(Enum):
"""
Base class for modality-type enumerations.
Each derived class (VisionType, TextType) holds
an integer value that identifies a specific modality.
Example usage:
If you have an object `my_event` of class `Event`,
you might write:
if my_event.type == VisionType.image:
# process an image frame
The methods below implement ordering and hashing
based on the integer `.value` of each enum member.
"""
@property
def modality(self):
return self.__class__
def __lt__(self, other):
if isinstance(other, ModalityType):
return self.value < other.value
raise NotImplementedError()
def __eq__(self, other):
if isinstance(other, ModalityType):
return self.value == other.value
raise NotImplementedError()
def __hash__(self):
return hash(self.value)
# NOTE: modality types need to be unique
class VisionType(ModalityType):
"""
Enum for vision modalities such as key video frames.
Typically used in video processing or image sequences.
Members:
image: A single image frame.
"""
image = 0
class TextType(ModalityType):
"""
Enum for text tokens and padding.
Members:
text: Actual textual tokens.
padding: Padding tokens used in sequence batching.
"""
text = 1
padding = 2
# maps idx -> type
ALL_TYPES = [
tp
for types in [
list(VisionType),
list(TextType),
]
for tp in types
]
# @dataclass
@dataclass(slots=True)
class Event:
"""
Represents a single data occurrence (with a specific type, time interval, and data payload).
Attributes:
data (Any): The actual data payload (e.g. a torch.Tensor, a string, etc.).
type (ModalityType): The modality type of the data (e.g., VisionType.image).
time (Tuple[float, float]): (start_time, end_time) indicating when this Event occurs.
role (Optional[str]): The role associated with this event (e.g., "user", "agent", "system").
If None, the event is always included in loss calculation.
Example usage:
evt = Event(data=torch.zeros((1, 224, 224, 3)), # e.g. a single image frame
type=VisionType.image,
time=(0.0, 0.04),
role="user")
"""
# Descriptors
data: Any
time: tuple[float, float]
type: ModalityType
role: str | None = None
# Structure
dims_virtual: list[int] | None = None # virtual/processed dimensions (e.g., pixel-shuffled)
dims_real: list[int] | None = None # real/actual tensor dimensions
idx_range: tuple[int, int] | None = None
# Misc Tags (data source, shard idx, etc.)
tags: dict = field(default_factory=dict)
def dims(self, virtual: bool = True) -> list[int] | None:
"""
Get the dimensions of this event.
Args:
virtual: If True (default), return virtual/processed dimensions (e.g., pixel-shuffled).
If False, return real/actual tensor dimensions.
Returns:
Dimensions list or None if not measured.
"""
if virtual:
return self.dims_virtual
else:
return self.dims_real
@property
def is_measured(self):
return self.dims_virtual is not None
def slice_tokens(self, start: int | None = None, end: int | None = None):
"""
Converts into a partial event where the only valid data is between start and end indices of the flattened data
"""
assert self.is_measured
assert start is not None and end is not None
assert self.idx_range[0] <= start <= end <= self.idx_range[1]
self.idx_range = (start or 0, end or math.prod(self.dims()))
def num_tokens(self, partial=True, virtual=True) -> int:
if not virtual:
assert partial is False and isinstance(self.data, torch.Tensor)
return math.prod(self.dims(virtual=False))
return self.idx_range[1] - self.idx_range[0] if partial else math.prod(self.dims())
def shallow_copy(self) -> Event:
return replace(self)
def __hash__(self) -> int:
"""Hash Event based on structure, excluding data."""
def make_hashable(obj):
"""Convert any object to hashable form."""
if obj is None:
return None
elif isinstance(obj, str | int | float | bool | tuple):
return obj
elif isinstance(obj, list):
return tuple(make_hashable(item) for item in obj) if obj else None
elif isinstance(obj, dict):
return tuple(sorted((k, make_hashable(v)) for k, v in obj.items())) if obj else None
elif hasattr(obj, "value"): # Enum types
return obj.value
else:
return str(obj) # Fallback for other types
hash_values = []
for fld in fields(self):
if fld.name == "data":
continue # Skip tensor data
value = getattr(self, fld.name)
hash_values.append(make_hashable(value))
return hash(tuple(hash_values))
def __eq__(self, other) -> bool:
"""
Compares two Event objects for strict equality,
allowing for float tolerances in torch.Tensors (via torch.allclose).
"""
if not isinstance(other, Event):
return False
for fld in fields(self):
self_value = getattr(self, fld.name)
other_value = getattr(other, fld.name)
if fld.name == "data":
# Special handling for tensor data with float tolerance
if isinstance(self_value, torch.Tensor) and isinstance(other_value, torch.Tensor):
if not torch.allclose(self_value, other_value):
return False
else:
if self_value != other_value:
return False
elif fld.name == "role":
# Special handling for role: both must be None or both must be set and equal
if (self_value is None) != (other_value is None):
return False
if self_value is not None and self_value != other_value:
return False
else:
# Standard equality for all other fields
if self_value != other_value:
return False
return True
@dataclass
class Stream:
"""
Represents an ordered sequence of Event objects, each with
a specific ModalityType and a time range.
Attributes:
events (List[Event]): The list of Event objects in the stream.
priority (List[ModalityType]): A list of modality types that define
how we might want to reorder or prioritize events if scheduling is needed.
Example usage:
# Create two events of different types
evt1 = Event(torch.zeros((1, 224, 224, 3)), VisionType.image, (0.0, 0.04))
evt2 = Event(torch.randint(0, 1000, (16, 1)), TextType.text, (0.0, 0.32))
# Make a stream with a given priority
s = Stream(events=[evt1, evt2],
priority=[VisionType.image, TextType.text])
print(s)
"""
events: list[Event]
priority: list[ModalityType] # priority of stream ordering
def __len__(self):
"""Returns the number of Event objects in this Stream."""
return len(self.events)
def __getitem__(self, key: int) -> Stream | Event:
return self.events[key]
def __iter__(self):
"""
Yields each Event in the Stream, enabling iteration like:
for event in my_stream:
...
"""
yield from self.events
# --- after ------------------------------------------------------------
@record_function("Stream.map")
def map(
self,
func: Callable[[Event], dict[str, Any]],
*,
copy_unchanged: bool = False, # opt-in if you really need isolation
) -> Stream:
"""
Apply *func* to every event and return a new Stream.
*func* must return a **dict of fields that actually change**.
We create **one shallow copy** only when something changes;
unchanged events are reused directly, which is inexpensive and
keeps autograd graphs intact.
"""
mapped: list[Event] = []
for ev in self.events:
delta = func(ev)
if not delta: # fast-path: nothing changes
mapped.append(ev if not copy_unchanged else ev.shallow_copy())
continue
new_ev = ev.shallow_copy() # ⚡ no tensor clone
for k, v in delta.items():
setattr(new_ev, k, v)
mapped.append(new_ev)
return create_stream(mapped, priority=self.priority, schedule=False)
@record_function("Stream.compact")
def compact(self) -> torch.Tensor:
assert all([(isinstance(ev.data, torch.Tensor) and ev.is_measured) for ev in self.events]), (
"Stream.compact only works for streams with events that have measured tensor data"
)
return torch.cat([ev.data for ev in self.events]).contiguous()
@record_function("Stream.map_compact")
def map_compact(self, event_tf: Callable[[Event], list[Any]]) -> torch.Tensor:
mapped_list = []
for event in self:
mapped_list.extend(event_tf(event))
tensor = torch.tensor(
mapped_list,
dtype=torch.long,
device=next(
(ev.data.device for ev in self.events if isinstance(ev.data, torch.Tensor)),
"cpu",
),
).contiguous()
return tensor
def flatten(self) -> Stream:
return self.map(lambda ev: {"data": ev.data.reshape(-1, ev.data.shape[-1])})
def shallow_copy(self) -> Stream:
events_copy = [ev.shallow_copy() for ev in self.events]
return create_stream(events=events_copy, priority=self.priority, schedule=False)
def __hash__(self) -> int:
"""Hash Stream based on structure."""
return hash(
(
tuple(p.value for p in self.priority), # Convert enums to values
tuple(hash(event) for event in self.events), # Use Event.__hash__
)
)
def __eq__(self, other) -> bool:
"""Compare Streams structurally."""
if not isinstance(other, Stream):
return False
return (
self.priority == other.priority
and len(self.events) == len(other.events)
and all(e1 == e2 for e1, e2 in zip(self.events, other.events, strict=False))
)
# TODO: implement all types of cool indexing which can happen since TensorStream assuems Event.data = Tensor
@dataclass
class TensorStream:
streams: list[Stream]
_device: torch.device | None = None
def __post_init__(self):
for stream in self.streams:
for event in stream.events:
assert isinstance(event.data, torch.Tensor)
if self._device is None:
self._device = torch.device(event.data.device)
# TODO: implement non-strict compaction modes
@record_function("TensorStream.compact")
def compact(self, mode="strict") -> torch.Tensor:
compact_tensor_stream = torch.stack([stream.compact() for stream in self.streams]).contiguous()
return compact_tensor_stream
@record_function("TensorStream.map")
def map(self, event_tf: Callable[[Event], dict[str, Any]]) -> TensorStream:
mapped_streams = [stream.map(event_tf) for stream in self.streams]
return TensorStream(mapped_streams)
@record_function("TensorStream.map_compact")
def map_compact(self, event_tf: Callable[[Event], list[Any]]) -> torch.Tensor:
mapped_list = []
for stream in self.streams:
for event in stream:
mapped_list.extend(event_tf(event))
B, T = self.shape
tensor = torch.tensor(mapped_list, dtype=torch.long, device=self.device).reshape(B, T)
return tensor
def flat_stream(self) -> Stream:
if not self.streams:
return create_stream([], priority=[], schedule=False)
return create_stream(
[event for stream in self.streams for event in stream], priority=self.streams[0].priority, schedule=False
)
@property
def device(self):
return self._device
@property
def shape(self):
seq_lens = [sum([ev.num_tokens() for ev in stream]) for stream in self.streams]
assert all([sl == seq_lens[0] for sl in seq_lens]), (
f"each stream must have same token count to have a shape: {seq_lens}"
)
return (len(seq_lens), seq_lens[0])
@record_function("TensorStream.to")
def to(
self,
device: torch.device | str,
dtype: torch.dtype | None = None,
non_blocking: bool = True,
) -> TensorStream:
"""
Move **all** `Event.data` tensors to *device*.
We send each tensor individually instead of the
flatten → unflatten round-trip:
* one async H2D copy per tensor (still overlapped when
`pin_memory=True` is set on the DataLoader),
* no extra host-side concat, no extra device allocation,
* `requires_grad` flags are preserved.
NOTE: textual modalities are always cast to `torch.long`;
everything else keeps its original
dtype unless an explicit *dtype* argument is supplied.
"""
target_device = torch.device(device)
for stream in self.streams:
for ev in stream:
# ------------------------------------------------------------------
# Decide the dtype for *this* event.
# ------------------------------------------------------------------
if ev.type in list(TextType):
tgt_dtype = torch.long
else:
tgt_dtype = dtype or ev.data.dtype
# ------------------------------------------------------------------
# Perform the device / dtype move.
# ------------------------------------------------------------------
# We clone no tensor here; torch will reuse storage
# if `dtype` and `device` are unchanged.
moved = ev.data.to(
device=target_device,
dtype=tgt_dtype,
non_blocking=non_blocking,
)
# Preserve autograd leaf & grad-enabled state.
moved.requires_grad_(ev.data.requires_grad)
ev.data = moved
# Remember where the whole TensorStream lives now.
self._device = target_device
return self
@record_function("TensorStream.pin_memory")
def pin_memory(self, non_blocking: bool = True) -> TensorStream:
"""
Page-lock (aka *pin*) all **CPU** tensors contained in this
`TensorStream`. Pinned tensors make subsequent asynchronous
H2D copies (e.g. inside `TensorStream.to("cuda")`) faster and,
when used together with a `DataLoader(pin_memory=True)`,
enable overlap of host-to-device transfers with GPU execution.
The call is a no-op for tensors that are already on a CUDA /
MPS / other non-CPU device.
Parameters
----------
non_blocking : bool, default = True
Forwarded to `Tensor.pin_memory()`; should almost always
stay *True* so later `to(device, non_blocking=True)` calls
can overlap.
Returns
-------
self : TensorStream
The same object (mutated in-place) to allow call chaining.
"""
for stream in self.streams:
for ev in stream:
if ev.data.device.type == "cpu":
# `pin_memory()` clones only when needed
pinned = ev.data.pin_memory() # noqa: F841
# NB: pin_memory() preserves dtype/shape/grad/etc.
if not non_blocking:
# ensure the pinning work is done now
torch.cuda.current_stream().synchronize() # safe on CPU too
ev.data = pinned
# `_device` **stays** the same (still CPU) – no change needed
return self
def __hash__(self) -> int:
"""Hash TensorStream based on structure."""
return hash(
(
tuple(hash(stream) for stream in self.streams), # Use Stream.__hash__
str(self._device) if self._device else None,
self.shape,
)
)
def __eq__(self, other) -> bool:
"""Compare TensorStreams structurally."""
if not isinstance(other, TensorStream):
return False
return (
self._device == other._device
and self.shape == other.shape
and len(self.streams) == len(other.streams)
and all(s1 == s2 for s1, s2 in zip(self.streams, other.streams, strict=False))
)
def collate_tensor_stream(
tensor_streams: list[TensorStream],
) -> TensorStream:
return TensorStream([stream for ts in tensor_streams for stream in ts.streams])
def _schedule_stream(stream: Stream) -> Stream:
"""
Internal function that reorders (schedules) the events in a Stream
based on the stream's priority.
By default, this calls schedule_events(...) and reorders the events accordingly.
The new ordering is assigned in-place to stream.events.
Example usage (indirect):
new_stream = _schedule_stream(old_stream)
"""
scheduled_inds = schedule_events(stream, priority=stream.priority)
stream.events = [stream.events[i] for i in scheduled_inds]
return stream
def create_stream(events: list[Event], priority: list[ModalityType], schedule: bool = True) -> Stream:
"""
Creates a new Stream with the given events and priority.
If 'schedule' is True, the events are reordered by calling _schedule_stream.
Example usage:
evt1 = Event(torch.zeros(10), TextType.text, (0.0, 1.0))
evt2 = Event(torch.ones(10), TextType.text, (1.0, 2.0))
my_stream = create_stream(events=[evt1, evt2],
priority=[TextType.text],
schedule=False)
print(my_stream)
"""
stream = Stream(events, priority)
if schedule:
stream = _schedule_stream(stream)
return stream
def merge_streams(streams: Iterable[Stream]) -> Stream:
"""
Merges multiple Stream objects into one.
The priority of the merged stream is chosen from the longest priority list among the inputs.
Stream priorities must be consistent with the chosen priority.
All events are concatenated, and a new Stream is created (and scheduled).
Example usage:
merged = merge_streams([stream1, stream2])
"""
chosen_priority = max([stream.priority for stream in streams], key=len)
assert all(
[str(stream.priority) in str([p for p in chosen_priority if p in stream.priority]) for stream in streams]
), "One or more streams has a priority order that doesn't match the merged stream"
merged_event_list = [ev for stream in streams for ev in stream.events]
merged_stream = create_stream(merged_event_list, chosen_priority) # non-root stream creation
return merged_stream
EventDescriptor = NewType("EventDescriptor", Any)
# NOTE: actually not used now but thought it *might* be useful
def get_stream_descriptor(
stream: Stream, measure_fn: Callable[[Event], EventDescriptor] = lambda ev: ev.type
) -> set[Any]:
"""
Create a set of descriptors for each Event in a Stream based on measure_fn.
measure_fn maps an Event to a descriptive key.
For example, if events have different data shapes, one might use:
measure_fn = lambda ev: ev.data.shape
i.e.
stream of VisionTypes with tensors of shapes [(1, 3, 3), (1, 3, 3), (1, 4, 4)]
get_stream_descriptor(stream, measure_fn=lambda t: t.shape) = {(1, 3, 3), (1, 4, 4)}
now we can pass this into group_streams which will split out vision sub-streams which can be bundled
Returns:
A set of descriptors representing the Events in the stream.
Example usage:
descriptor = get_stream_descriptor(my_stream, lambda ev: ev.type)
"""
stream_descriptor = set()
for ev in stream.events:
ev_measurement = measure_fn(ev)
stream_descriptor.add(ev_measurement)
return stream_descriptor
def group_streams(
stream: Stream, group_fn: Callable[[Event], EventDescriptor], schedule=True
) -> dict[EventDescriptor, Stream]:
"""
Splits a single Stream into multiple sub-Streams, grouped by the output of group_fn(event).
For example, group_fn could be:
- lambda ev: ev.type
- lambda ev: ev.type.modality
- lambda ev: (ev.type.modality, ev.data.shape)
Returns:
A dictionary mapping each group key to a Stream of events belonging to that group.
If 'schedule' is True, each sub-Stream is scheduled via create_stream(..., schedule=True).
Example usage:
substreams = group_streams(my_stream, lambda ev: ev.type)
"""
split_streams: defaultdict[EventDescriptor, list[Event]] = defaultdict(list)
for ev in stream:
group = group_fn(ev)
split_streams[group].append(ev)
for g, events in split_streams.items():
split_streams[g] = create_stream(events, stream.priority, schedule=schedule)
return dict(split_streams)
# Define Category for clarity
Category = NewType("Category", Any)
def schedule_events(stream: Stream, priority: list[Category]) -> list[int]:
"""
Schedule events based on their start time and priority using a topological sort algorithm.
The priority list defines the ordering of categories.
This function:
1. Pairs each event with its original index.
2. Sorts events by start time.
3. Builds a dependency graph based on overlapping events.
4. Uses a heap to perform a deterministic topological sort with tie-breakers.
Raises:
ValueError: If a cycle is detected in the events (i.e., no valid ordering exists).
Returns:
List[int]: A list of original indices representing the scheduled order of events.
"""
priority_index: dict[Category, int] = {category: idx for idx, category in enumerate(priority)}
# Pair each event metadata with its original index
events = []
for i, event in enumerate(stream.events):
events.append(
(
i,
event.time[0],
event.time[1],
event.type,
)
)
sorted_events = sorted(events, key=lambda e: e[1]) # sort by start time
num_events = len(sorted_events)
# Build dependency graph
graph = defaultdict(set)
indegree = {i: 0 for i in range(num_events)}
for i in range(num_events):
idx_i, start_i, end_i, category_i = sorted_events[i]
prio_i = priority_index[category_i]
for j in range(i + 1, num_events):
idx_j, start_j, end_j, category_j = sorted_events[j]
if start_j >= end_i:
break
if end_i > start_j and end_j > start_i:
prio_j = priority_index[category_j]
if prio_i < prio_j:
graph[i].add(j)
indegree[j] += 1
elif prio_i > prio_j:
graph[j].add(i)
indegree[i] += 1
# Use heap for deterministic tie-breakers: (start_time, priority, original_index)
heap = [
(
sorted_events[i][1],
priority_index[sorted_events[i][3]],
sorted_events[i][0],
i,
)
for i in range(num_events)
if indegree[i] == 0
]
heapq.heapify(heap)
resolved_order = []
while heap:
_, _, _, u = heapq.heappop(heap)
resolved_order.append(u)
for v in graph[u]:
indegree[v] -= 1
if indegree[v] == 0:
heapq.heappush(
heap,
(
sorted_events[v][1],
priority_index[sorted_events[v][3]],
sorted_events[v][0],
v,
),
)
if len(resolved_order) != num_events:
raise ValueError("Cycle detected in events, cannot resolve order")
return [sorted_events[i][0] for i in resolved_order]
def compute_mrope_pos_tensor(ts: TensorStream, n_pos_dims: int = 3) -> torch.Tensor:
"""
Create a (batch, T, n_pos_dims) position tensor in one sweep.
The first dim is the running “time” index, the rest are spatial (or 1-fillers).
Args:
ts : TensorStream
n_pos_dims : total coordinate dimensions (default 3)
Returns:
torch.LongTensor - shape (batch_size, seq_len, n_pos_dims)
"""
# Manually iterate through streams and events like map_compact does,
# but maintain cumulative time offset for each stream
all_coords = []
for stream in ts.streams: # one Stream == one batch sample
cumulative_offset = 0 # running time index for this stream
for event in stream:
# --- build coordinate grid for THIS event using itertools (no tensor ops) ---
dims = (event.dims() or [1]) + [1] * (n_pos_dims - len(event.dims() or []))
# Create ranges for each dimension (similar to old _finalize implementation)
first_dim = range(cumulative_offset, cumulative_offset + dims[0])
cumulative_offset += dims[0] # advance time for the next event
other_dims = [range(d) for d in dims[1:]]
# Use itertools.product to create all coordinate combinations
full_coords = list(itertools.product(first_dim, *other_dims))
# Slice if the event is partial
s, e = event.idx_range
coords = full_coords[s:e]
# Extend the flattened coordinate list
all_coords.extend(coords)
# Convert to tensor and reshape to (B, T, n_pos_dims)
B, T = ts.shape
return torch.tensor(all_coords, dtype=torch.long, device=ts.device).reshape(B, T, n_pos_dims)
# ──────────────────────────────────────────────────────────────────────────
# Generic event-labelling helper
# ──────────────────────────────────────────────────────────────────────────
def event_mask(
ts: TensorStream,
tag_fn: Callable[[Event], int | None],
default: int = -1,
) -> torch.Tensor:
"""
Build a (batch, seq_len) LongTensor whose value for every *token*
is given by `tag_fn(event)`, falling back to `default` when the
function returns None.
The work is done in a single pass via `map → compact`.
"""
def to_label(ev: Event) -> Any:
label = tag_fn(ev)
if label is None:
label = default
return [label] * ev.num_tokens()
return ts.map_compact(to_label).squeeze(-1)
def event_mask_by_key(
ts: TensorStream,
key: str,
tag_index: dict[str, int],
default: int = -1,
) -> torch.Tensor:
"""
Faster call-site syntax when you just want to look up
`event.tags[key]` and map it through `tag_index`.
"""
return event_mask(
ts,
lambda ev: tag_index.get(ev.tags.get(key)) if key in ev.tags else None,
default=default,
)
def modality_mask(ts: TensorStream) -> torch.Tensor:
return event_mask(ts, lambda ev: ev.type.value)
ROLE_TO_IDX = {
None: -1,
"": -1,
"agent": 0,
"user": 1,
"system": 2,
# … add more if you like
}
def role_mask(ts: TensorStream) -> torch.Tensor:
return event_mask(ts, lambda ev: ROLE_TO_IDX.get(ev.role, -1))
def tensor_stream_token_view(ts: TensorStream) -> torch.Tensor:
"""
Return a (B, T) token view by summing across the last dim of every
event and flattening over the selected token range.
"""
def to_token_view(ev: Event) -> list[int]:
# collapse all but the last dim, cast to long
flat = ev.data.sum(dim=-1).long().reshape(-1)
if ev.idx_range is not None:
s, e = ev.idx_range
return flat[s:e].tolist()
else:
return flat.tolist()
return ts.map_compact(to_token_view) # shape (B, T)
def reconstruct_tensor_stream_from_compact_dict(
ts: TensorStream, compact_dict: dict[ModalityType, torch.Tensor]
) -> TensorStream:
streams = []
for stream in ts.streams:
event_list = []
for event in stream:
new_event = event.shallow_copy()
new_event.data = compact_dict[event.type][event.idx_range[0] : event.idx_range[1]]
compact_dict[event.type] = compact_dict[event.type][event.num_tokens(partial=False) :]
event_list.append(new_event)
streams.append(Stream(event_list, priority=stream.priority))
return TensorStream(streams)
def set_data(
tensor_stream: TensorStream,
stream_types: Iterable[ModalityType],
roles: Iterable[str] = ROLE_TO_IDX.keys(),
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Gathers data from a TensorStream according to the given stream types
and returns (data, mask) where 'data' has valid entries for
each requested stream type and 'mask' indicates which elements
in 'data' are valid.
NOTE: Currently assumes stream_types are text-based types, but can be extended.
Args:
tensor_stream (TensorStream):
The input TensorStream which contains data for multiple modalities.
stream_types (Iterable[ModalityType]):
A list or iterable of modality types (e.g., TextType, VisionType, etc.)
to retrieve from the TensorStream.
exclude_non_agent_roles (bool, optional):
If True, only include tokens with role="agent" or role=None in the loss calculation.
Defaults to False.
Returns:
Tuple[torch.Tensor, torch.Tensor]:
- data: A tensor of the same shape as the internal metadata shape,
containing valid entries from the given stream types.
- mask: A boolean tensor of the same shape, where True indicates
the corresponding element in 'data' is valid/used.
"""
# Retrieve indexing and shape metadata
st_tensor = modality_mask(tensor_stream) # (B, T) modality-ids
roles_tensor = role_mask(tensor_stream) # (B, T) role-ids
# Create output data placeholders on the same device
data = torch.zeros_like(st_tensor).to(tensor_stream.device)
set_data_mask = torch.zeros_like(st_tensor).bool().to(tensor_stream.device).bool()
per_modality_stream = group_streams(tensor_stream.flat_stream(), group_fn=lambda ev: ev.type, schedule=False)
per_modality_compact_stream = {k: v.compact() for k, v in per_modality_stream.items()}
# Fill 'data' and 'set_data_mask' for each requested stream type
for st in stream_types:
data_mask = st_tensor == st.value
partial_mask = (
per_modality_stream[st]
.map_compact(
lambda ev: [int(ev.idx_range[0] <= i < ev.idx_range[1]) for i in range(ev.num_tokens(partial=False))]
)
.bool()
)
data[data_mask] = per_modality_compact_stream[st].reshape(-1)[partial_mask]
roles_mask = torch.zeros_like(st_tensor).bool().to(tensor_stream.device).bool()
for role in roles:
roles_mask |= roles_tensor == ROLE_TO_IDX[role]
data_mask = data_mask & roles_mask
set_data_mask[data_mask] = True
return data, set_data_mask
def ts_slice(tensor_stream: TensorStream, start: int, end: int) -> TensorStream:
"""
Return a new TensorStream that contains *only* the tokens in the
half-open interval ``[start, end)`` (0-based, inclusive-exclusive).
"""
B, T = tensor_stream.shape
assert 0 <= start <= end <= T, f"slice [{start}, {end}) is out of bounds for sequence length {T}"
sliced_streams: list[Stream] = []
for stream in tensor_stream.streams:
# current position in tensor stream token dims
curr_global_index = 0
new_events: list[Event] = []
# iterate over each of the events in the stream only selecting
# the events that fall within the range
for ev in stream:
ev_len = ev.num_tokens()
# ev_start, ev_end are the start and end indicies of the
# event within the tensor stream token dim
global_ev_start, global_ev_end = curr_global_index, curr_global_index + ev_len
if global_ev_end <= start:
# The event occurs before the start skip it and move the cursor
# forward
curr_global_index = global_ev_end
continue
if global_ev_start >= end:
# event occurs after the end we can exit
break
# only consider the part of the event that falls within the range
keep_from = max(0, start - global_ev_start)
keep_to = min(ev_len, end - global_ev_start)
part = ev.shallow_copy()
if keep_from == 0 and keep_to == ev_len:
# Event lies wholly inside the slice
new_events.append(part)
else:
# Partial overlap → trim.
assert ev.is_measured
# update the local event ranges for the slices
sliced_event_start = part.idx_range[0] + keep_from
sliced_event_end = part.idx_range[0] + keep_to
part.slice_tokens(sliced_event_start, sliced_event_end)
new_events.append(part)
curr_global_index = global_ev_end
sliced_streams.append(create_stream(new_events, stream.priority, schedule=False))
return TensorStream(sliced_streams)
class PixelShuffleSiglip2VisionConfig(Siglip2VisionConfig):
"""Vision configuration for Isaac with Pixel Shuffle support.
Extends Siglip2VisionConfig with additional fields for pixel shuffle.
"""
model_type = "pixel_shuffle_siglip2"
base_config_key = "vision_config"
def __init__(
self,
pixel_shuffle_scale_factor: int = 1,
num_patches: int = 256,
**kwargs,
):
super().__init__(**kwargs)
# Add our custom fields
self.pixel_shuffle_scale_factor = pixel_shuffle_scale_factor
self.num_patches = num_patches
def create_cumulative_seq_lengths(seq_sizes: torch.Tensor, device: torch.device) -> tuple[torch.Tensor, int]:
"""Create cumulative sequence lengths for variable-length attention."""
cu_seqlens = torch.zeros(len(seq_sizes) + 1, dtype=torch.int32, device=device)
cu_seqlens[1:] = seq_sizes.cumsum(0)
max_seqlen = int(seq_sizes.max().item()) if len(seq_sizes) > 0 else 0
return cu_seqlens, max_seqlen
class Siglip2VariableSequenceEmbeddings(nn.Module):
def __init__(self, config: PixelShuffleSiglip2VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Linear(
in_features=config.num_channels * self.patch_size * self.patch_size,
out_features=self.embed_dim,
)
self.num_patches = config.num_patches
self.position_embedding_size = int(self.num_patches**0.5)
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
def positional_embeddings(
self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor, torch.Tensor]
) -> torch.Tensor:
# Prepare positional embeddings grid: (1, embed_dim, h, w)
positional_embeddings = (
self.position_embedding.weight.reshape(self.position_embedding_size, self.position_embedding_size, -1)
.permute(2, 0, 1)
.unsqueeze(0)
)
_seq_patches, _seq_sizes, spatial_shapes = packed_seq_patches
pos_embeds_list = []
mode = "bilinear"
align_corners = False
antialias = True
for spatial_shape in spatial_shapes:
height, width = spatial_shape
# Guard to ensure height and width are positive for torch.compile
if height > 0 and width > 0:
resized_pos_embed = F.interpolate(
positional_embeddings,
size=(height, width),
mode=mode,
align_corners=align_corners,
antialias=antialias,
)
# Reshape from (1, embed_dim, height, width) to (height*width, embed_dim)
resized_pos_embed = resized_pos_embed.reshape(self.embed_dim, height * width).transpose(0, 1)
else:
# Fallback - should never happen in practice
resized_pos_embed = positional_embeddings.reshape(
self.embed_dim, self.position_embedding_size * self.position_embedding_size
).transpose(0, 1)[: height * width]
pos_embeds_list.append(resized_pos_embed)
# Concatenate all positional embeddings along the sequence dimension
pos_embeds = torch.cat(pos_embeds_list, dim=0)
return pos_embeds
def forward(self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
seq_patches, _seq_sizes, _spatial_shapes = packed_seq_patches
# Apply patch embeddings
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(seq_patches.to(dtype=target_dtype))
pos_embeds = self.positional_embeddings(packed_seq_patches)
# Add positional embeddings to patch embeddings
embeddings = patch_embeds + pos_embeds
return embeddings
class Siglip2VariableLengthAttention(nn.Module):
"""Custom attention that supports variable-length sequences with flash attention."""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(self, hidden_states, cu_seqlens=None, max_seqlen=None):
batch_size, seq_len, _ = hidden_states.size()
# For variable-length attention, we need to reshape to (total_tokens, embed_dim)
if batch_size != 1:
raise ValueError("Variable-length attention expects batch_size=1 for packed sequences")
hidden_states = hidden_states.squeeze(0) # Remove batch dimension: (seq_len, embed_dim)
# Store original dtype
orig_dtype = hidden_states.dtype
# 1. Linear projections
Q = self.q_proj(hidden_states) # (seq_len, embed_dim)
K = self.k_proj(hidden_states) # (seq_len, embed_dim)
V = self.v_proj(hidden_states) # (seq_len, embed_dim)
# 2. Reshape for multi-head attention: (seq_len, n_heads, head_dim)
Q = Q.view(-1, self.num_heads, self.embed_dim // self.num_heads)
K = K.view(-1, self.num_heads, self.embed_dim // self.num_heads)
V = V.view(-1, self.num_heads, self.embed_dim // self.num_heads)
# 3. Apply variable-length attention using flash attention
attn_output, _, _, _, _ = torch.ops.aten._flash_attention_forward(
query=Q,
key=K,
value=V,
cum_seq_q=cu_seqlens,
cum_seq_k=cu_seqlens,
max_q=max_seqlen,
max_k=max_seqlen,
dropout_p=self.dropout if self.training else 0.0,
is_causal=False,
return_debug_mask=False,
scale=self.scale,
window_size_left=-1,
window_size_right=-1,
alibi_slopes=None,
)
# 4. Reshape attention output from (seq_len, n_heads, head_dim) to (seq_len, embed_dim)
attn_output = attn_output.reshape(seq_len, self.embed_dim)
# 5. Convert back to original dtype if needed
if attn_output.dtype != orig_dtype:
attn_output = attn_output.to(orig_dtype)
# 6. Project output
attn_output = self.out_proj(attn_output) # (seq_len, embed_dim)
# 7. Add back batch dimension for compatibility
attn_output = attn_output.unsqueeze(0) # (1, seq_len, embed_dim)
return attn_output, None
class IsaacSiglip2EncoderLayer(nn.Module):
"""Siglip2 encoder layer with variable-length attention."""
def __init__(self, config: PixelShuffleSiglip2VisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Siglip2VariableLengthAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Siglip2MLP(config) # Use HF's Siglip2MLP
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor = None,
max_seqlen: int = None,
) -> tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return (hidden_states,)
class IsaacEncoder(nn.Module):
"""Encoder using Isaac encoder layers with variable-length attention support."""
def __init__(self, config: PixelShuffleSiglip2VisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([IsaacSiglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
inputs_embeds,
cu_seqlens: torch.Tensor | None = None,
max_seqlen: int | None = None,
output_hidden_states: bool = False,
):
all_hidden_states = () if output_hidden_states else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
cu_seqlens,
max_seqlen,
)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return hidden_states, all_hidden_states, None
def create_pixel_shuffle_index_map(
seq_sizes: torch.Tensor,
token_grids: torch.Tensor,
scale_factor: int = 1,
device: torch.device | None = None,
) -> torch.Tensor:
"""
Build a gather-index map that tells us, for every *output* token after
pixel-shuffle, which `scale_factor**2` *input* tokens are being merged.
Args
----
seq_sizes : (num_images,) - #patches in each image (row-major order)
token_grids : (num_images,2) - (height, width) for every image
scale_factor : spatial down-scale factor (≥2)
device : (optional) overrides `seq_sizes.device`
Returns
-------
gather_idx : (new_total_seq_len, scale_factor**2) int64 tensor.
gather_idx[i, j] is the *flat* index into the *original*
packed sequence for the j-th sub-patch that forms the
i-th output token.
"""
if device is None:
device = seq_sizes.device
r = int(scale_factor)
if r < 2:
raise ValueError("`scale_factor` must be ≥ 2")
# Safety: all spatial dims must be divisible by r
# Cannot run under torch compile fullgraph mode hence
if not torch.compiler.is_compiling():
if not ((token_grids[:, 0] % r == 0).all() and (token_grids[:, 1] % r == 0).all()):
raise AssertionError(
f"Every (H,W) in `token_grids` must be divisible by scale_factor={r}, got {token_grids.tolist()}"
)
gather_chunks: list[torch.Tensor] = []
tok_offset = 0
for seq_len, (h, w) in zip(seq_sizes.tolist(), token_grids.tolist(), strict=False):
# Build the (H, W) grid of flat indices for this image
grid = torch.arange(seq_len, device=device, dtype=torch.int64) + tok_offset
grid = grid.view(h, w) # (H, W)
# -------- identical ordering to your fixed-res routine --------
# Step 1: split width into blocks of r
grid = grid.view(h, w // r, r) # (H, W/r, r)
# Step 2: now split height into blocks of r
grid = grid.view(h // r, r, w // r, r) # (H/r, r, W/r, r)
# Step 3: final permutation to (H/r, W/r, r, r)
grid = grid.permute(0, 2, 1, 3).contiguous() # (H/r, W/r, r, r)
# Step 4: each (r, r) block forms one output token
gather_chunks.append(grid.reshape(-1, r * r)) # (H*W / r², r²)
tok_offset += seq_len
# Concatenate over all images in the packed batch
gather_idx = torch.cat(gather_chunks, dim=0) # (Σ_i HᵢWᵢ/r², r²)
return gather_idx
def pixel_shuffle_varlen(
x: torch.Tensor,
token_grids: torch.Tensor,
scale_factor: int = 1,
) -> torch.Tensor:
r"""Apply pixel shuffle to a packed vision sequence without unpacking per image.
Args:
x (`torch.Tensor`):
Concatenated vision embeddings. Accepts `(seq_len, hidden_size)` or `(1, seq_len, hidden_size)` shapes
produced by stacking image patches.
token_grids (`torch.Tensor`):
Integer tensor of shape `(num_images, 2)` whose rows give the `(height, width)` patch grid sizes
corresponding to each image segment inside `x`.
scale_factor (`int`, *optional*, defaults to 1):
Spatial down-sampling factor specific to pixel shuffle. Values greater than one merge `scale_factor**2` neighboring patches into a
single embedding channel-group.
Returns:
`torch.Tensor`: Pixel-shuffled embeddings with shape matching the input convention:
`(seq_len, hidden_size * scale_factor**2)` when the input was 2D, or `(1, seq_len, hidden_size * scale_factor**2)`
if the singleton batch dimension was present.
Raises:
ValueError: If more than one batch item is provided.
"""
keep_batch_dim = x.dim() == 3
if keep_batch_dim:
if x.size(0) != 1:
raise AssertionError("Packed sequence is expected to have batch_size == 1")
x_ = x.squeeze(0) # (seq, embed)
else:
x_ = x # (seq, embed)
embed_dim = x_.size(-1)
r = int(scale_factor)
# Calculate seq_sizes from token_grids
seq_sizes = torch.prod(token_grids, dim=-1)
# Build index map and gather in one go
gather_idx = create_pixel_shuffle_index_map(
seq_sizes=seq_sizes,
token_grids=token_grids,
scale_factor=r,
device=x_.device,
) # (new_seq, r²)
# Gather → (new_seq, r², embed_dim)
gathered = x_[gather_idx] # fancy indexing keeps gradient
# Merge the r² group dimension into channels to finish the shuffle
out = gathered.reshape(gathered.size(0), embed_dim * r * r)
# Restore batch dimension if needed
if keep_batch_dim:
out = out.unsqueeze(0)
return out
class Siglip2SequenceVisionTransformer(nn.Module):
def __init__(self, config: PixelShuffleSiglip2VisionConfig):
super().__init__()
self.config = config
self.embeddings = Siglip2VariableSequenceEmbeddings(config)
self.encoder = IsaacEncoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pixel_shuffle_scale_factor = config.pixel_shuffle_scale_factor
def forward(self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor]):
seq_patches, token_grids = packed_seq_patches
seq_sizes = torch.prod(token_grids, dim=-1)
# Get embeddings from packed sequence
hidden_states = self.embeddings((seq_patches, seq_sizes, token_grids))
# Add a pseudo batch dimension for the encoder
hidden_states = hidden_states.unsqueeze(0)
# Generate cumulative sequence lengths for variable-length attention
cu_seqlens, max_seqlen = create_cumulative_seq_lengths(seq_sizes, hidden_states.device)
# Pass through encoder with variable-length attention parameters
hidden_states, _, _ = self.encoder(
inputs_embeds=hidden_states,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
# Apply final layer normalization
hidden_states = self.post_layernorm(hidden_states)
if self.pixel_shuffle_scale_factor > 1:
hidden_states = pixel_shuffle_varlen(
x=hidden_states,
token_grids=token_grids,
scale_factor=self.pixel_shuffle_scale_factor,
)
# Remove the pseudo batch dimension we added earlier
hidden_states = hidden_states.squeeze(0)
# Return the full sequence of embeddings
return hidden_states
# ============================================================================
# Configuration
# ============================================================================
MAX_PIXELS = 60_000_000 # 60-megapixel ceiling ≈ 8200 × 7300 px
# Vision preprocessing constants
VISION_MEAN = (0.5, 0.5, 0.5)
VISION_STD = (0.5, 0.5, 0.5)
VISION_SCALE = 1 / 255
def _make_writeable(arr: np.ndarray) -> np.ndarray:
"""Return *arr* itself if it is already writeable, otherwise try to flip the
write flag in-place and finally fall back to `arr.copy()`.
This guarantees the buffer handed to `torch.from_numpy()` is always
writeable, silencing the PyTorch warning about undefined behaviour.
"""
if arr.flags.writeable:
return arr
# First, try the cheap path — in-place flag toggle (works for mmap'd arrays
# and some shared memory buffers):
try:
arr.setflags(write=True)
return arr # success: no data copy
except ValueError:
# Buffer is inherently read-only (e.g. backed by PyAV / PIL): make copy
return arr.copy()
def extract_image_pil(image: PIL.Image.Image) -> torch.Tensor | None:
if image.width * image.height > MAX_PIXELS:
raise ValueError(f"Image (w={image.width}, h={image.height}) > MAX=`{MAX_PIXELS}`")
img = image if image.mode == "RGB" else image.convert("RGB")
arr = np.asarray(img)
arr = _make_writeable(arr)
return torch.from_numpy(arr)
def get_image_size_for_max_num_patches(
image_height: int,
image_width: int,
patch_size: int,
max_num_patches: int,
min_num_patches: int | None = None,
eps: float = 1e-5,
pixel_shuffle_scale: int = 1,
) -> tuple[int, int]:
r"""Compute a target resolution whose patch grid satisfies patching parametrization.
Args:
image_height (`int`):
Height in pixels of the source image prior to any resizing.
image_width (`int`):
Width in pixels of the source image prior to any resizing.
patch_size (`int`):
Size of the square patch used by the vision encoder.
max_num_patches (`int`):
Upper bound on `(height / patch_size) * (width / patch_size)` after resizing.
min_num_patches (`int`, *optional*):
Lower bound on the number of patches. When provided the image will be scaled up if necessary.
eps (`float`, *optional*, defaults to 1e-5):
Convergence tolerance for the internal binary search to determing the target dimensions.
pixel_shuffle_scale (`int`, *optional*, defaults to 1):
Additional stride multiplier applied when pixel shuffle later reduces spatial resolution.
Returns:
`tuple[int, int]`: Height and width (in pixels) that are multiples of `patch_size * pixel_shuffle_scale`
and respect both the maximum and optional minimum patch-count constraints.
"""
def get_scaled_image_size(scale, original_size, patch_size, pixel_shuffle_scale):
scaled_size = scale * original_size
divisor = patch_size * pixel_shuffle_scale
scaled_size = math.ceil(scaled_size / divisor) * divisor
scaled_size = max(divisor, scaled_size)
return int(scaled_size)
# Ensure divisibility
divisor = patch_size * pixel_shuffle_scale
adjusted_height = math.ceil(image_height / divisor) * divisor
adjusted_height = max(divisor, adjusted_height)
adjusted_width = math.ceil(image_width / divisor) * divisor
adjusted_width = max(divisor, adjusted_width)
num_patches = (adjusted_height / patch_size) * (adjusted_width / patch_size)
if min_num_patches is not None and num_patches < min_num_patches:
# Scale up
scale_min, scale_max = 1.0, 100.0
while (scale_max - scale_min) >= eps:
scale = (scale_min + scale_max) / 2
target_height = get_scaled_image_size(scale, image_height, patch_size, pixel_shuffle_scale)
target_width = get_scaled_image_size(scale, image_width, patch_size, pixel_shuffle_scale)
num_patches = (target_height / patch_size) * (target_width / patch_size)
if num_patches >= min_num_patches:
scale_max = scale
else:
scale_min = scale
scale = scale_max
target_height = get_scaled_image_size(scale, image_height, patch_size, pixel_shuffle_scale)
target_width = get_scaled_image_size(scale, image_width, patch_size, pixel_shuffle_scale)
return target_height, target_width
elif num_patches <= max_num_patches:
return adjusted_height, adjusted_width
else:
# Scale down
scale_min, scale_max = eps / 10, 1.0
while (scale_max - scale_min) >= eps:
scale = (scale_min + scale_max) / 2
target_height = get_scaled_image_size(scale, image_height, patch_size, pixel_shuffle_scale)
target_width = get_scaled_image_size(scale, image_width, patch_size, pixel_shuffle_scale)
num_patches = (target_height / patch_size) * (target_width / patch_size)
if num_patches <= max_num_patches:
scale_min = scale
else:
scale_max = scale
scale = scale_min
target_height = get_scaled_image_size(scale, image_height, patch_size, pixel_shuffle_scale)
target_width = get_scaled_image_size(scale, image_width, patch_size, pixel_shuffle_scale)
return target_height, target_width
_MEAN_TENSOR = torch.tensor(VISION_MEAN, dtype=torch.float32).view(1, 1, 1, -1)
_STD_TENSOR = torch.tensor(VISION_STD, dtype=torch.float32).view(1, 1, 1, -1)
def prepare_image_tensor(
image: torch.Tensor,
scale: float = VISION_SCALE,
) -> torch.Tensor:
r"""Standardize RGB images prior to patch extraction via rescaling and whitening.
Args:
image (`torch.Tensor`):
Tensor with shape `(..., height, width, 3)` containing RGB values. The tensor is converted to floating
point if needed.
scale (`float`, *optional*, defaults to `VISION_SCALE`):
Scalar multiplier applied before normalization.
Returns:
`torch.Tensor`: Normalized tensor with the same shape as the input and dtype `torch.float32`.
"""
if not torch.is_floating_point(image):
image = image.float()
rescaled = image * scale
# Use precomputed tensors and move to the correct device if needed
mean_tensor = _MEAN_TENSOR.to(image.device)
std_tensor = _STD_TENSOR.to(image.device)
normalized = (rescaled - mean_tensor) / std_tensor
return normalized
def patchify_vision(image: torch.Tensor, patch_size: int) -> torch.Tensor:
r"""Convert normalized images into flattened ViT-style patches.
Args:
image (`torch.Tensor`):
Tensor of shape `(num_images, height, width, channels)`.
patch_size (`int`):
Edge length of the square patches
Returns:
`torch.Tensor`:
Patch tensor where each position stores the flattened pixels belonging to that patch.
Raises:
ValueError: If `height` or `width` is not divisible by `patch_size`.
"""
num_images, height, width, channels = image.shape
if height % patch_size or width % patch_size:
raise ValueError(f"Dimensions of images {image.shape} are not divisible by patch_size={patch_size}.")
patches = image.reshape(num_images, height // patch_size, patch_size, width // patch_size, patch_size, channels)
patches = patches.permute(0, 1, 3, 2, 4, 5)
patches = patches.reshape(num_images, height // patch_size, width // patch_size, channels * patch_size * patch_size)
return patches
def process_vision_for_patches(
images: torch.Tensor,
patch_size: int,
max_num_patches: int,
min_num_patches: int | None = None,
pixel_shuffle_scale: int = 1,
) -> tuple[torch.Tensor, list[int]]:
r"""Resize, normalize, and patchify RGB images for the vision encoder.
Args:
images (`torch.Tensor`):
Either `(height, width, channels)` for a single image or `(num_images, height, width, channels)` for a
batch. Channels are expected to be RGB.
patch_size (`int`):
Edge length of square patches; implictly controls resize grid granularity.
max_num_patches (`int`):
Maximum number of patches allowed after resizing.
min_num_patches (`int`, *optional*):
Minimum number of patches. If provided, the routine upsamples images as needed to satisfy the lower bound.
pixel_shuffle_scale (`int`, *optional*, defaults to 1):
pixel shuffle scale factor; influences the target grid that the function produces.
Returns:
`tuple[torch.Tensor, list[int]]`: A pair `(patches, dims_virtual)` where `patches` has shape
`(num_images, target_h / patch_size, target_w / patch_size, channels * patch_size**2)` and `dims_virtual`
encodes effective `(images, height, width)` dimensions after optional pixel shuffling.
"""
# Add batch dim if single image
if images.dim() == 3:
images = images.unsqueeze(0)
# Permute to channel first for resize
images = images.permute(0, 3, 1, 2)
# Get target dimensions
_, _, orig_height, orig_width = images.shape
target_height, target_width = get_image_size_for_max_num_patches(
orig_height,
orig_width,
patch_size,
max_num_patches,
min_num_patches=min_num_patches,
pixel_shuffle_scale=pixel_shuffle_scale,
)
# Resize
images = F.interpolate(
images,
size=(target_height, target_width),
mode="bilinear",
align_corners=False,
)
# Back to channel last
images = images.permute(0, 2, 3, 1)
# Normalize
images = prepare_image_tensor(images)
# Patchify
patches = patchify_vision(images, patch_size=patch_size)
# Calculate dimensions for the patches
n_images, h_patches, w_patches, _ = patches.shape
dims_virtual = (
[1, h_patches, w_patches]
if pixel_shuffle_scale == 1
else [1, h_patches // pixel_shuffle_scale, w_patches // pixel_shuffle_scale]
)
return patches, dims_virtual
def precompute_inv_freq(theta: float, dim: int) -> torch.Tensor:
"""
Returns shape (dim//2,).
"""
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
return inv_freq # type: ignore[return-value]
def precompute_cos_sin_3d(
position_ids: torch.Tensor, # shape (3, B, T)
inv_freq: torch.Tensor, # shape (dim//2,)
mrope_half_section: list[int], # sum to dim//2
) -> tuple[torch.Tensor, torch.Tensor]:
r"""Generate 3D rotary embeddings for multi-axis positions.
Args:
position_ids (`torch.Tensor`):
Tensor of shape `(3, batch_size, seq_len)` containing positional indices for the x/y/t axes.
inv_freq (`torch.Tensor`):
Precomputed inverse frequency vector used to derive rotary phases.
mrope_half_section (`list[int]`):
Sizes the axis-specific frequency blocks.
Returns:
`tuple[torch.Tensor, torch.Tensor]`: Cosine and sine tensors, each of shape `(batch_size, seq_len, dim)`, ready
to be passed into rotary attention layers.
"""
B = position_ids.shape[1]
T = position_ids.shape[2]
dim_half = inv_freq.shape[0]
device = position_ids.device
# Initialize with full dimension (not half) to match LLaMA
cos_3d = torch.zeros((B, T, dim_half * 2), dtype=torch.float32, device=device)
sin_3d = torch.zeros((B, T, dim_half * 2), dtype=torch.float32, device=device)
offset = 0
for d in range(3):
block_size = mrope_half_section[d]
freq_slice = inv_freq[offset : offset + block_size] # shape => (block_size,)
# shape => (B, T, block_size)
phase = position_ids[d].unsqueeze(-1).float() * freq_slice
cos_part = phase.cos()
sin_part = phase.sin()
# Duplicate values for both halves of the dimension
cos_3d[:, :, offset : offset + block_size] = cos_part
cos_3d[:, :, dim_half + offset : dim_half + offset + block_size] = cos_part
sin_3d[:, :, offset : offset + block_size] = sin_part
sin_3d[:, :, dim_half + offset : dim_half + offset + block_size] = sin_part
offset += block_size
return cos_3d, sin_3d
class RopeScaling(TypedDict, total=False):
rope_type: str
factor: float
mrope_section: list[int]
mrope_interleaved: bool
low_freq_factor: float
high_freq_factor: float
original_max_position_embeddings: int
class IsaacConfig(Qwen3Config):
"""Configuration class for Isaac multimodal model."""
model_type = "isaac"
sub_configs = {"vision_config": PixelShuffleSiglip2VisionConfig}
def __init__(
self,
vision_config=None,
vision_patch_size: int = 16,
vision_max_num_patches: int = 256,
vision_min_num_patches: int | None = None,
pixel_shuffle_scale: int = 1,
max_sequence_length: int = 16384,
vision_token: str = "<image>",
**kwargs,
):
super().__init__(**kwargs)
# Handle vision config - either dict or PixelShuffleSiglip2VisionConfig instance
if isinstance(vision_config, dict):
self.vision_config = self.sub_configs["vision_config"](**vision_config)
elif vision_config is None:
self.vision_config = self.sub_configs["vision_config"]()
else:
self.vision_config = vision_config
# EventStreamProcessor parameters (for backward compatibility)
self.video_patch_size = vision_patch_size
self.vision_max_num_patches = vision_max_num_patches
self.vision_min_num_patches = vision_min_num_patches
self.pixel_shuffle_scale = pixel_shuffle_scale
# Processing parameters
self.max_sequence_length = max_sequence_length
self.vision_token = vision_token
# ============================================================================
# Processor Components
# ============================================================================
def create_text_event(tokenizer: AutoTokenizer, text: str, time: float = 0.0) -> Event:
r"""Wrap a text into an `Event` compatible with the multimodal TensorStream.
Args:
tokenizer (`AutoTokenizer`):
Tokenizer used to convert text into model vocabulary ids.
text (`str`):
Plain-text fragment to encode.
time (`float`, *optional*, defaults to 0.0):
Timeline coordinate associated with the event. Both start and end times use the same value because text
segments are instantaneous in the scheduler.
Returns:
`Event`: Event carrying a `(num_tokens, 1)` tensor of token ids with matching
metadata so that downstream processors can compute modality-specific embeddings.
"""
tokens = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").squeeze(0)
# Calculate dimensions for the event
num_tokens = len(tokens)
dims_virtual = [num_tokens, 1] # [sequence_length, 1]
dims_real = dims_virtual.copy()
# Ensure tokens has the right shape for tensor_stream_token_view
# It expects a 2D tensor where sum(dim=-1) gives the token IDs
if tokens.dim() == 1:
tokens = tokens.unsqueeze(-1)
return Event(
data=tokens,
type=TextType.text,
time=(time, time),
dims_virtual=dims_virtual,
dims_real=dims_real,
idx_range=(0, num_tokens),
)
# ============================================================================
# Processor
# ============================================================================
class IsaacProcessor(ProcessorMixin):
attributes = ["tokenizer"]
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(
self,
tokenizer: Qwen2Tokenizer,
config: IsaacConfig | dict,
):
super().__init__(tokenizer)
self.tokenizer = tokenizer
if isinstance(config, dict):
config = IsaacConfig(**config)
self.config = config
# Use vision token from config
self.vision_token = config.vision_token
# Processing parameters
self.max_sequence_length = config.max_sequence_length
# Vision processing parameters
self.patch_size = config.video_patch_size
self.max_num_patches = config.vision_max_num_patches
self.min_num_patches = config.vision_min_num_patches
self.pixel_shuffle_scale = config.pixel_shuffle_scale
def apply_chat_template(
self,
messages: list[dict[str, Any]],
tokenize: bool = False,
add_generation_prompt: bool = False,
**kwargs,
) -> Any:
return self.tokenizer.apply_chat_template(
messages, tokenize=tokenize, add_generation_prompt=add_generation_prompt, **kwargs
)
def build_event_stream_simple(
self,
text: str,
images: list[PIL.Image.Image] | None = None,
) -> Stream:
events = []
# Process text and images
# Find all occurrences of vision token
pattern = re.escape(self.vision_token)
parts = re.split(f"({pattern})", text) # Keep the delimiter in the result
image_idx = 0
for current_time, part in enumerate(parts):
if part == self.vision_token:
# Replace vision token with image event
if image_idx < len(images):
# Create vision event from PIL image
image_tensor = extract_image_pil(images[image_idx])
if image_tensor is not None:
# Create a vision event with the image tensor
vision_event = Event(
data=image_tensor.unsqueeze(0), # HWC format from extract_image_pil
type=VisionType.image, # I-frame
time=(current_time, current_time),
)
events.append(vision_event)
image_idx += 1
elif part: # Non-empty text part
# tokens = self.text_processor.tokenize(part, add_special_tokens=False)
text_event = create_text_event(self.tokenizer, part, time=current_time)
events.append(text_event)
# Process vision events if any
if any(event.type == VisionType.image for event in events):
# Separate text and vision events for processing
text_events = [event for event in events if event.type == TextType.text]
vision_events = [event for event in events if event.type == VisionType.image]
# Process vision events using functional approach
processed_vision_events = []
for vision_event in vision_events:
# Process the vision data
patches, dims_virtual = process_vision_for_patches(
vision_event.data.squeeze(0), # Remove the extra dimension
patch_size=self.patch_size,
max_num_patches=self.max_num_patches,
min_num_patches=self.min_num_patches,
pixel_shuffle_scale=self.pixel_shuffle_scale,
)
# Update event with processed data
vision_event.data = patches.unsqueeze(1) # Add back frame dimension
vision_event.dims_virtual = dims_virtual
vision_event.dims_real = (
dims_virtual
if self.pixel_shuffle_scale == 1
else [
dims_virtual[0],
dims_virtual[1] * self.pixel_shuffle_scale,
dims_virtual[2] * self.pixel_shuffle_scale,
]
)
vision_event.idx_range = (0, math.prod(dims_virtual))
# Flatten the patches
vision_event.data = vision_event.data.reshape(-1, vision_event.data.shape[-1])
processed_vision_events.append(vision_event)
events = text_events + processed_vision_events
# Create stream without scheduling (events already in order)
return create_stream(events, priority=[TextType.text, VisionType.image], schedule=True)
def __call__(
self,
text: Union[str, list[str]],
images: Union[PIL.Image.Image, list[PIL.Image.Image], None] = None,
return_tensors: str | TensorType | None = TensorType.PYTORCH,
**kwargs,
) -> BatchFeature:
"""
Process text and images into TensorStream format.
Args:
text: Input text or list of texts with vision tokens
images: PIL image or list of images (optional)
return_tensors: Format for output tensors
Returns:
BatchFeature with input_ids and tensor_stream
"""
# Normalize inputs to lists
if isinstance(text, str):
texts = [text]
else:
texts = text
if images is not None:
if isinstance(images, PIL.Image.Image):
images_list = [images]
else:
images_list = images
else:
images_list = None
if len(texts) != 1:
raise ValueError("IsaacProcessor currently supports batch_size=1")
if images_list is not None:
# Count vision tokens in text to validate image count
vision_token_count = texts[0].count(self.vision_token)
if vision_token_count != len(images_list):
raise ValueError(
f"Number of {self.vision_token} tokens in text ({vision_token_count}) "
f"must match number of images ({len(images_list)})"
)
# Build event stream
stream = self.build_event_stream_simple(
text=texts[0],
images=images_list,
)
# Create TensorStream
tensor_stream = TensorStream([stream])
# Slice to max length if needed
_, T = tensor_stream.shape
if T > self.max_sequence_length:
tensor_stream = ts_slice(tensor_stream, start=T - self.max_sequence_length, end=T)
# Get token view
tokens = tensor_stream_token_view(tensor_stream)
if return_tensors in (TensorType.PYTORCH, "pt"):
input_ids = torch.as_tensor(tokens, dtype=torch.long)
else:
input_ids = tokens
data = {
"input_ids": input_ids,
"tensor_stream": tensor_stream,
}
return BatchFeature(data=data)
# ============================================================================
# Model
# ============================================================================
def compute_position_ids_input_ids(input_ids: torch.Tensor) -> torch.Tensor:
r"""Create 3D positional indices for token input.
Args:
input_ids (`torch.Tensor`):
Tensor of shape `(batch_size, seq_len)` containing token ids.
Returns:
`torch.Tensor`: Positional indices with shape `(batch_size, seq_len, 3)` where each channel duplicates the
1D position so it can be consumed by the 3-axis MRoPE rotary embedding.
"""
batch_size, seq_length = input_ids.shape
position_ids = torch.arange(seq_length, device=input_ids.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
position_ids = position_ids.unsqueeze(2).expand(-1, -1, 3) # Add 3D for MRoPE
return position_ids
class IsaacRotaryEmbedding(nn.Module):
def __init__(self, config: IsaacConfig, device=None):
super().__init__()
# Extract dimensions from config
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.head_dim = config.head_dim
# Get rope_scaling config - use direct access when available
rope_scaling = getattr(config, "rope_scaling", None) or {}
# Read RopeScaling parameters
self.rope_type = rope_scaling.get("rope_type", "default")
self.mrope_section = [
self.head_dim // 4, # 2x more for temporal dim
self.head_dim // 8,
self.head_dim // 8,
]
rope_base = getattr(config, "rope_theta", 10000.0)
inv_freq = precompute_inv_freq(rope_base, self.head_dim)
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, position_ids: torch.Tensor, modality_tensor: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
with torch.no_grad():
# Ensure non-spatial tokens have 1D rotation equivalence
not_spatial = ~(modality_tensor == VisionType.image.value)
# shape is [N, 1]
data_1d = position_ids[not_spatial][..., 0].unsqueeze(-1)
# now broadcast it from [N, 1] -> [N, D] so it matches pos[not_spatial] exactly
data_1d = data_1d.expand(-1, position_ids.shape[-1]) # expand along the last dim
position_ids = position_ids.clone() # Clone to avoid warning about in-place operations on expanded tensors
position_ids[not_spatial] = data_1d
position_ids = position_ids.permute(2, 0, 1) # pos dim first -> (3, B, L)
cos, sin = precompute_cos_sin_3d(position_ids, self.inv_freq, self.mrope_section)
return cos, sin
class IsaacModel(Qwen3Model):
def __init__(self, config: IsaacConfig):
super().__init__(config)
text_cfg = getattr(config, "get_text_config", lambda: config)()
self.layers = torch.nn.ModuleList(
[Qwen3DecoderLayer(text_cfg, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.rotary_emb = IsaacRotaryEmbedding(config, device=self.device)
vision_cfg = config.vision_config
if vision_cfg is None:
raise ValueError("IsaacConfig should always have vision_config")
hidden_dim = vision_cfg.hidden_size * (vision_cfg.pixel_shuffle_scale_factor**2)
self.vision_embedding = nn.Sequential(
Siglip2SequenceVisionTransformer(vision_cfg),
nn.Linear(
hidden_dim,
4 * hidden_dim,
bias=False,
),
nn.SiLU(),
nn.Linear(4 * hidden_dim, config.hidden_size, bias=False),
)
# Dispatch table for TensorStream balanced embedding (text + vision)
self.embed_fns = {
TextType: self.embed_text_tokens,
VisionType: self.embed_vision,
}
def embed_text_tokens(self, token_ids: torch.Tensor) -> torch.Tensor:
"""Embed text tokens, squeezing singleton dimensions."""
# Text events are shaped as (..., 1); squeeze the singleton index dim
h = self.embed_tokens(token_ids)
if h.dim() >= 2 and h.size(-2) == 1:
h = h[..., 0, :]
return h
def embed_vision(self, vision_tokens: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
"""Embed vision tokens using the vision encoder."""
# vision tokens is (seq_patches, token_grids)
return self.vision_embedding(vision_tokens)
def embed_stream(self, tensor_stream: TensorStream) -> torch.Tensor:
"""
Embed each modality stream independently, preserving the original TensorStream
structure.
"""
flat_stream = tensor_stream.flat_stream()
per_modality_stream = group_streams(flat_stream, group_fn=lambda ev: ev.type, schedule=False)
per_modality_compact_stream = {k: v.compact() for k, v in per_modality_stream.items()}
# Collect per-event grids for vision tokens (H, W like dims sans time)
token_grids = defaultdict(list)
for stream in tensor_stream.streams:
for event in stream:
token_grids[event.type].append(event.dims(virtual=False))
embedded_compact = {}
for stream_type, modality_payload_tensor in per_modality_compact_stream.items():
if stream_type.modality == VisionType:
# Build a (N_events, 2) grid tensor with spatial dims only
grids = token_grids.get(stream_type, [])
if len(grids) == 0:
input_tensor = modality_payload_tensor
else:
token_grids_tensor = torch.tensor(grids, dtype=torch.long, device=tensor_stream.device)[:, 1:]
input_tensor = (modality_payload_tensor, token_grids_tensor)
embedded_compact[stream_type] = self.embed_fns[stream_type.modality](input_tensor)
else:
embedded_compact[stream_type] = self.embed_fns[stream_type.modality](modality_payload_tensor)
# Reconstruct a TensorStream with embedded payloads and compact
embedded_ts = reconstruct_tensor_stream_from_compact_dict(tensor_stream, embedded_compact)
h = embedded_ts.compact() # (B, T, D)
return h
def forward(
self,
input_ids: torch.LongTensor | None = None,
tensor_stream: TensorStream | None = None,
attention_mask: torch.Tensor | None = None,
position_ids: torch.LongTensor | None = None,
modality_tensor: torch.LongTensor | None = None,
past_key_values: list[torch.FloatTensor] | None = None,
inputs_embeds: torch.FloatTensor | None = None,
use_cache: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
cache_position: torch.LongTensor | None = None,
**kwargs,
) -> tuple | BaseModelOutputWithPast:
"""
Forward pass with MRoPE position embeddings.
Computes position embeddings once and passes them through all layers.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Get inputs
if tensor_stream is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both tensor_stream and inputs_embeds")
elif tensor_stream is not None:
# Embed TensorStream directly
inputs_embeds = self.embed_stream(tensor_stream)
# Create modality tensor if not provided
if modality_tensor is None:
modality_tensor = modality_mask(tensor_stream)
elif input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
inputs_embeds = self.embed_tokens(input_ids)
# Create text modality tensor if not provided
if modality_tensor is None:
batch_size, seq_length = input_ids.shape
modality_tensor = torch.full(
(batch_size, seq_length), TextType.text.value, device=input_ids.device, dtype=torch.long
)
elif inputs_embeds is None:
raise ValueError("You have to specify either tensor_stream, input_ids or inputs_embeds")
# Create default position_ids if not provided
if position_ids is None:
if tensor_stream is not None:
position_ids = compute_mrope_pos_tensor(tensor_stream) # (B,L,3)
else:
position_ids = compute_position_ids_input_ids(input_ids)
# Compute MRoPE position embeddings if we have custom rotary_emb
cos, sin = self.rotary_emb(position_ids, modality_tensor)
cos = cos.to(inputs_embeds.dtype)
sin = sin.to(inputs_embeds.dtype)
# Prepare attention mask
if attention_mask is not None:
attention_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, False
)
# Initialize hidden states
hidden_states = inputs_embeds
for decoder_layer in self.layers:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=(cos, sin),
**kwargs,
)
hidden_states = layer_outputs[0] if isinstance(layer_outputs, tuple) else layer_outputs
# Final layer norm
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu", "npu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: Qwen3Config,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`Qwen3Config`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin):
"""Isaac multimodal model for conditional generation."""
config_class = IsaacConfig
def __init__(self, config: IsaacConfig):
Qwen3PreTrainedModel.__init__(self, config)
self.model = IsaacModel(config) # Use our custom model
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Tracks rotary position offsets computed during a full forward pass so decode steps can reuse them.
self.rope_deltas = None
self.config = config
def get_rope_index(
self,
input_ids: torch.Tensor | None,
tensor_stream: TensorStream | None,
attention_mask: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Compute MRoPE position ids from a TensorStream (or 1D fallback).
Returns (position_ids, rope_deltas). position_ids is (B,L,3) for MRoPE.
rope_deltas is (B,1) used to advance positions in decode.
"""
# tensor_stream present: compute 3D coords
if tensor_stream is None and input_ids is None:
raise ValueError("`tensor_stream` or `input_ids` must be provided to compute rope indices")
if tensor_stream is not None:
pos_3d = compute_mrope_pos_tensor(tensor_stream) # (B,L,3)
else:
pos_3d = compute_position_ids_input_ids(input_ids)
B, L, _ = pos_3d.shape
# Max position per batch across the 3 planes and sequence dimension: (B,)
m_per_batch = pos_3d.amax(dim=(1, 2))
# Sequence lengths per batch: (B,)
if attention_mask is None:
seq_lens = torch.full_like(m_per_batch, L)
else:
seq_lens = attention_mask.eq(1).sum(dim=-1).to(dtype=m_per_batch.dtype, device=m_per_batch.device)
rope_deltas = (m_per_batch + 1 - seq_lens).to(dtype=pos_3d.dtype).unsqueeze(1)
return pos_3d, rope_deltas
def forward(
self,
input_ids: torch.LongTensor | None = None,
tensor_stream: TensorStream | None = None,
attention_mask: torch.Tensor | None = None,
position_ids: torch.LongTensor | None = None,
past_key_values: list[torch.FloatTensor] | None = None,
inputs_embeds: torch.FloatTensor | None = None,
labels: torch.LongTensor | None = None,
use_cache: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
cache_position: torch.LongTensor | None = None,
**kwargs,
) -> tuple | CausalLMOutputWithPast:
"""
Forward pass for conditional generation supporting both standard inputs and TensorStream.
Uses our embed_stream approach for multimodal inputs.
"""
# Don't compute embeddings here - let the model handle it
if tensor_stream is not None:
input_ids = None
if input_ids is None and inputs_embeds is None and tensor_stream is None:
raise ValueError("Either input_ids, inputs_embeds, or tensor_stream must be provided.")
# Build position ids (MRoPE) if needed and tensor_stream is available
# During decode we reuse `self.rope_deltas` computed on the initial forward pass; `rope_delta` captures how far
# cached rotary phases have progressed so we can advance `position_ids` without rebuilding the TensorStream.
if position_ids is None and tensor_stream is not None:
position_ids, self.rope_deltas = self.get_rope_index(input_ids, tensor_stream, attention_mask)
elif position_ids is None and input_ids is not None:
# For text inputs build position ids and modality tensor
position_ids = compute_position_ids_input_ids(input_ids)
if cache_position is not None and self.rope_deltas is not None:
# Combine the incremental decode step (`cache_position`) with cached offsets so hidden states continue
# rotating in lockstep across generation steps.
rope_delta = (cache_position[0] + self.rope_deltas).to(input_ids.device)
else:
rope_delta = 0
if cache_position is not None and not isinstance(rope_delta, int): # otherwise `deltas` is an int `0`
batch_size = input_ids.shape[0]
rope_delta = rope_delta.repeat_interleave(batch_size // rope_delta.shape[0], dim=0)
position_ids = position_ids.add(rope_delta)
if tensor_stream is not None:
modality_tensor = modality_mask(tensor_stream)
else:
batch_size, seq_len = input_ids.shape
modality_tensor = torch.empty(batch_size, seq_len, device=position_ids.device).fill_(TextType.text.value)
outputs = self.model(
input_ids=input_ids,
tensor_stream=tensor_stream,
attention_mask=attention_mask,
position_ids=position_ids,
modality_tensor=modality_tensor,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=None,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: list[torch.FloatTensor] | None = None,
attention_mask: torch.Tensor | None = None,
inputs_embeds: torch.FloatTensor | None = None,
tensor_stream: TensorStream | None = None,
cache_position: torch.LongTensor | None = None,
position_ids: torch.LongTensor | None = None,
use_cache: bool = True,
**kwargs,
) -> dict[str, Any]:
"""
Prepare inputs for generation, handling TensorStream inputs properly.
"""
# Call parent preparation
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
**kwargs,
)
# Handle TensorStream for first forward pass only
if tensor_stream is not None and (cache_position is None or cache_position[0] == 0):
model_inputs["tensor_stream"] = tensor_stream
# Let forward rebuild position_ids using cached deltas during decode
model_inputs["position_ids"] = None
# Drop tensor_stream after step 0
if cache_position is not None and cache_position[0] != 0:
model_inputs["tensor_stream"] = None
return model_inputs
def can_generate(self) -> bool:
return True
__all__ = [
"IsaacConfig",
"IsaacModel",
"IsaacForConditionalGeneration",
"IsaacProcessor",
] |