from __future__ import annotations from collections import defaultdict from typing import Any, NewType, Union, TypedDict import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import PIL.Image from transformers import ( AutoTokenizer, BatchFeature, Cache, Qwen3Config, Qwen3ForCausalLM, Qwen3PreTrainedModel, ) from transformers.cache_utils import SlidingWindowCache, StaticCache from transformers.generation.utils import GenerationMixin from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.models.qwen3.modeling_qwen3 import Qwen3DecoderLayer, Qwen3Model from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils import TensorType from transformers.modeling_attn_mask_utils import AttentionMaskConverter import re from transformers.models.siglip2.modeling_siglip2 import ( Siglip2MLP, ) from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig import itertools from collections.abc import Callable, Iterable import heapq from collections.abc import Callable, Iterable from dataclasses import dataclass, field, fields, replace from enum import Enum from torch.profiler import record_function class ModalityType(Enum): """ Base class for modality-type enumerations. Each derived class (VisionType, TextType) holds an integer value that identifies a specific modality. Example usage: If you have an object `my_event` of class `Event`, you might write: if my_event.type == VisionType.image: # process an image frame The methods below implement ordering and hashing based on the integer `.value` of each enum member. """ @property def modality(self): return self.__class__ def __lt__(self, other): if isinstance(other, ModalityType): return self.value < other.value raise NotImplementedError() def __eq__(self, other): if isinstance(other, ModalityType): return self.value == other.value raise NotImplementedError() def __hash__(self): return hash(self.value) # NOTE: modality types need to be unique class VisionType(ModalityType): """ Enum for vision modalities such as key video frames. Typically used in video processing or image sequences. Members: image: A single image frame. """ image = 0 class TextType(ModalityType): """ Enum for text tokens and padding. Members: text: Actual textual tokens. padding: Padding tokens used in sequence batching. """ text = 1 padding = 2 # maps idx -> type ALL_TYPES = [ tp for types in [ list(VisionType), list(TextType), ] for tp in types ] # @dataclass @dataclass(slots=True) class Event: """ Represents a single data occurrence (with a specific type, time interval, and data payload). Attributes: data (Any): The actual data payload (e.g. a torch.Tensor, a string, etc.). type (ModalityType): The modality type of the data (e.g., VisionType.image). time (Tuple[float, float]): (start_time, end_time) indicating when this Event occurs. role (Optional[str]): The role associated with this event (e.g., "user", "agent", "system"). If None, the event is always included in loss calculation. Example usage: evt = Event(data=torch.zeros((1, 224, 224, 3)), # e.g. a single image frame type=VisionType.image, time=(0.0, 0.04), role="user") """ # Descriptors data: Any time: tuple[float, float] type: ModalityType role: str | None = None # Structure dims_virtual: list[int] | None = None # virtual/processed dimensions (e.g., pixel-shuffled) dims_real: list[int] | None = None # real/actual tensor dimensions idx_range: tuple[int, int] | None = None # Misc Tags (data source, shard idx, etc.) tags: dict = field(default_factory=dict) def dims(self, virtual: bool = True) -> list[int] | None: """ Get the dimensions of this event. Args: virtual: If True (default), return virtual/processed dimensions (e.g., pixel-shuffled). If False, return real/actual tensor dimensions. Returns: Dimensions list or None if not measured. """ if virtual: return self.dims_virtual else: return self.dims_real @property def is_measured(self): return self.dims_virtual is not None def slice_tokens(self, start: int | None = None, end: int | None = None): """ Converts into a partial event where the only valid data is between start and end indices of the flattened data """ assert self.is_measured assert start is not None and end is not None assert self.idx_range[0] <= start <= end <= self.idx_range[1] self.idx_range = (start or 0, end or math.prod(self.dims())) def num_tokens(self, partial=True, virtual=True) -> int: if not virtual: assert partial is False and isinstance(self.data, torch.Tensor) return math.prod(self.dims(virtual=False)) return self.idx_range[1] - self.idx_range[0] if partial else math.prod(self.dims()) def shallow_copy(self) -> Event: return replace(self) def __hash__(self) -> int: """Hash Event based on structure, excluding data.""" def make_hashable(obj): """Convert any object to hashable form.""" if obj is None: return None elif isinstance(obj, str | int | float | bool | tuple): return obj elif isinstance(obj, list): return tuple(make_hashable(item) for item in obj) if obj else None elif isinstance(obj, dict): return tuple(sorted((k, make_hashable(v)) for k, v in obj.items())) if obj else None elif hasattr(obj, "value"): # Enum types return obj.value else: return str(obj) # Fallback for other types hash_values = [] for fld in fields(self): if fld.name == "data": continue # Skip tensor data value = getattr(self, fld.name) hash_values.append(make_hashable(value)) return hash(tuple(hash_values)) def __eq__(self, other) -> bool: """ Compares two Event objects for strict equality, allowing for float tolerances in torch.Tensors (via torch.allclose). """ if not isinstance(other, Event): return False for fld in fields(self): self_value = getattr(self, fld.name) other_value = getattr(other, fld.name) if fld.name == "data": # Special handling for tensor data with float tolerance if isinstance(self_value, torch.Tensor) and isinstance(other_value, torch.Tensor): if not torch.allclose(self_value, other_value): return False else: if self_value != other_value: return False elif fld.name == "role": # Special handling for role: both must be None or both must be set and equal if (self_value is None) != (other_value is None): return False if self_value is not None and self_value != other_value: return False else: # Standard equality for all other fields if self_value != other_value: return False return True @dataclass class Stream: """ Represents an ordered sequence of Event objects, each with a specific ModalityType and a time range. Attributes: events (List[Event]): The list of Event objects in the stream. priority (List[ModalityType]): A list of modality types that define how we might want to reorder or prioritize events if scheduling is needed. Example usage: # Create two events of different types evt1 = Event(torch.zeros((1, 224, 224, 3)), VisionType.image, (0.0, 0.04)) evt2 = Event(torch.randint(0, 1000, (16, 1)), TextType.text, (0.0, 0.32)) # Make a stream with a given priority s = Stream(events=[evt1, evt2], priority=[VisionType.image, TextType.text]) print(s) """ events: list[Event] priority: list[ModalityType] # priority of stream ordering def __len__(self): """Returns the number of Event objects in this Stream.""" return len(self.events) def __getitem__(self, key: int) -> Stream | Event: return self.events[key] def __iter__(self): """ Yields each Event in the Stream, enabling iteration like: for event in my_stream: ... """ yield from self.events # --- after ------------------------------------------------------------ @record_function("Stream.map") def map( self, func: Callable[[Event], dict[str, Any]], *, copy_unchanged: bool = False, # opt-in if you really need isolation ) -> Stream: """ Apply *func* to every event and return a new Stream. *func* must return a **dict of fields that actually change**. We create **one shallow copy** only when something changes; unchanged events are reused directly, which is inexpensive and keeps autograd graphs intact. """ mapped: list[Event] = [] for ev in self.events: delta = func(ev) if not delta: # fast-path: nothing changes mapped.append(ev if not copy_unchanged else ev.shallow_copy()) continue new_ev = ev.shallow_copy() # ⚡ no tensor clone for k, v in delta.items(): setattr(new_ev, k, v) mapped.append(new_ev) return create_stream(mapped, priority=self.priority, schedule=False) @record_function("Stream.compact") def compact(self) -> torch.Tensor: assert all([(isinstance(ev.data, torch.Tensor) and ev.is_measured) for ev in self.events]), ( "Stream.compact only works for streams with events that have measured tensor data" ) return torch.cat([ev.data for ev in self.events]).contiguous() @record_function("Stream.map_compact") def map_compact(self, event_tf: Callable[[Event], list[Any]]) -> torch.Tensor: mapped_list = [] for event in self: mapped_list.extend(event_tf(event)) tensor = torch.tensor( mapped_list, dtype=torch.long, device=next( (ev.data.device for ev in self.events if isinstance(ev.data, torch.Tensor)), "cpu", ), ).contiguous() return tensor def flatten(self) -> Stream: return self.map(lambda ev: {"data": ev.data.reshape(-1, ev.data.shape[-1])}) def shallow_copy(self) -> Stream: events_copy = [ev.shallow_copy() for ev in self.events] return create_stream(events=events_copy, priority=self.priority, schedule=False) def __hash__(self) -> int: """Hash Stream based on structure.""" return hash( ( tuple(p.value for p in self.priority), # Convert enums to values tuple(hash(event) for event in self.events), # Use Event.__hash__ ) ) def __eq__(self, other) -> bool: """Compare Streams structurally.""" if not isinstance(other, Stream): return False return ( self.priority == other.priority and len(self.events) == len(other.events) and all(e1 == e2 for e1, e2 in zip(self.events, other.events, strict=False)) ) # TODO: implement all types of cool indexing which can happen since TensorStream assuems Event.data = Tensor @dataclass class TensorStream: streams: list[Stream] _device: torch.device | None = None def __post_init__(self): for stream in self.streams: for event in stream.events: assert isinstance(event.data, torch.Tensor) if self._device is None: self._device = torch.device(event.data.device) # TODO: implement non-strict compaction modes @record_function("TensorStream.compact") def compact(self, mode="strict") -> torch.Tensor: compact_tensor_stream = torch.stack([stream.compact() for stream in self.streams]).contiguous() return compact_tensor_stream @record_function("TensorStream.map") def map(self, event_tf: Callable[[Event], dict[str, Any]]) -> TensorStream: mapped_streams = [stream.map(event_tf) for stream in self.streams] return TensorStream(mapped_streams) @record_function("TensorStream.map_compact") def map_compact(self, event_tf: Callable[[Event], list[Any]]) -> torch.Tensor: mapped_list = [] for stream in self.streams: for event in stream: mapped_list.extend(event_tf(event)) B, T = self.shape tensor = torch.tensor(mapped_list, dtype=torch.long, device=self.device).reshape(B, T) return tensor def flat_stream(self) -> Stream: if not self.streams: return create_stream([], priority=[], schedule=False) return create_stream( [event for stream in self.streams for event in stream], priority=self.streams[0].priority, schedule=False ) @property def device(self): return self._device @property def shape(self): seq_lens = [sum([ev.num_tokens() for ev in stream]) for stream in self.streams] assert all([sl == seq_lens[0] for sl in seq_lens]), ( f"each stream must have same token count to have a shape: {seq_lens}" ) return (len(seq_lens), seq_lens[0]) @record_function("TensorStream.to") def to( self, device: torch.device | str, dtype: torch.dtype | None = None, non_blocking: bool = True, ) -> TensorStream: """ Move **all** `Event.data` tensors to *device*. We send each tensor individually instead of the flatten → unflatten round-trip: * one async H2D copy per tensor (still overlapped when `pin_memory=True` is set on the DataLoader), * no extra host-side concat, no extra device allocation, * `requires_grad` flags are preserved. NOTE: textual modalities are always cast to `torch.long`; everything else keeps its original dtype unless an explicit *dtype* argument is supplied. """ target_device = torch.device(device) for stream in self.streams: for ev in stream: # ------------------------------------------------------------------ # Decide the dtype for *this* event. # ------------------------------------------------------------------ if ev.type in list(TextType): tgt_dtype = torch.long else: tgt_dtype = dtype or ev.data.dtype # ------------------------------------------------------------------ # Perform the device / dtype move. # ------------------------------------------------------------------ # We clone no tensor here; torch will reuse storage # if `dtype` and `device` are unchanged. moved = ev.data.to( device=target_device, dtype=tgt_dtype, non_blocking=non_blocking, ) # Preserve autograd leaf & grad-enabled state. moved.requires_grad_(ev.data.requires_grad) ev.data = moved # Remember where the whole TensorStream lives now. self._device = target_device return self @record_function("TensorStream.pin_memory") def pin_memory(self, non_blocking: bool = True) -> TensorStream: """ Page-lock (aka *pin*) all **CPU** tensors contained in this `TensorStream`. Pinned tensors make subsequent asynchronous H2D copies (e.g. inside `TensorStream.to("cuda")`) faster and, when used together with a `DataLoader(pin_memory=True)`, enable overlap of host-to-device transfers with GPU execution. The call is a no-op for tensors that are already on a CUDA / MPS / other non-CPU device. Parameters ---------- non_blocking : bool, default = True Forwarded to `Tensor.pin_memory()`; should almost always stay *True* so later `to(device, non_blocking=True)` calls can overlap. Returns ------- self : TensorStream The same object (mutated in-place) to allow call chaining. """ for stream in self.streams: for ev in stream: if ev.data.device.type == "cpu": # `pin_memory()` clones only when needed pinned = ev.data.pin_memory() # noqa: F841 # NB: pin_memory() preserves dtype/shape/grad/etc. if not non_blocking: # ensure the pinning work is done now torch.cuda.current_stream().synchronize() # safe on CPU too ev.data = pinned # `_device` **stays** the same (still CPU) – no change needed return self def __hash__(self) -> int: """Hash TensorStream based on structure.""" return hash( ( tuple(hash(stream) for stream in self.streams), # Use Stream.__hash__ str(self._device) if self._device else None, self.shape, ) ) def __eq__(self, other) -> bool: """Compare TensorStreams structurally.""" if not isinstance(other, TensorStream): return False return ( self._device == other._device and self.shape == other.shape and len(self.streams) == len(other.streams) and all(s1 == s2 for s1, s2 in zip(self.streams, other.streams, strict=False)) ) def collate_tensor_stream( tensor_streams: list[TensorStream], ) -> TensorStream: return TensorStream([stream for ts in tensor_streams for stream in ts.streams]) def _schedule_stream(stream: Stream) -> Stream: """ Internal function that reorders (schedules) the events in a Stream based on the stream's priority. By default, this calls schedule_events(...) and reorders the events accordingly. The new ordering is assigned in-place to stream.events. Example usage (indirect): new_stream = _schedule_stream(old_stream) """ scheduled_inds = schedule_events(stream, priority=stream.priority) stream.events = [stream.events[i] for i in scheduled_inds] return stream def create_stream(events: list[Event], priority: list[ModalityType], schedule: bool = True) -> Stream: """ Creates a new Stream with the given events and priority. If 'schedule' is True, the events are reordered by calling _schedule_stream. Example usage: evt1 = Event(torch.zeros(10), TextType.text, (0.0, 1.0)) evt2 = Event(torch.ones(10), TextType.text, (1.0, 2.0)) my_stream = create_stream(events=[evt1, evt2], priority=[TextType.text], schedule=False) print(my_stream) """ stream = Stream(events, priority) if schedule: stream = _schedule_stream(stream) return stream def merge_streams(streams: Iterable[Stream]) -> Stream: """ Merges multiple Stream objects into one. The priority of the merged stream is chosen from the longest priority list among the inputs. Stream priorities must be consistent with the chosen priority. All events are concatenated, and a new Stream is created (and scheduled). Example usage: merged = merge_streams([stream1, stream2]) """ chosen_priority = max([stream.priority for stream in streams], key=len) assert all( [str(stream.priority) in str([p for p in chosen_priority if p in stream.priority]) for stream in streams] ), "One or more streams has a priority order that doesn't match the merged stream" merged_event_list = [ev for stream in streams for ev in stream.events] merged_stream = create_stream(merged_event_list, chosen_priority) # non-root stream creation return merged_stream EventDescriptor = NewType("EventDescriptor", Any) # NOTE: actually not used now but thought it *might* be useful def get_stream_descriptor( stream: Stream, measure_fn: Callable[[Event], EventDescriptor] = lambda ev: ev.type ) -> set[Any]: """ Create a set of descriptors for each Event in a Stream based on measure_fn. measure_fn maps an Event to a descriptive key. For example, if events have different data shapes, one might use: measure_fn = lambda ev: ev.data.shape i.e. stream of VisionTypes with tensors of shapes [(1, 3, 3), (1, 3, 3), (1, 4, 4)] get_stream_descriptor(stream, measure_fn=lambda t: t.shape) = {(1, 3, 3), (1, 4, 4)} now we can pass this into group_streams which will split out vision sub-streams which can be bundled Returns: A set of descriptors representing the Events in the stream. Example usage: descriptor = get_stream_descriptor(my_stream, lambda ev: ev.type) """ stream_descriptor = set() for ev in stream.events: ev_measurement = measure_fn(ev) stream_descriptor.add(ev_measurement) return stream_descriptor def group_streams( stream: Stream, group_fn: Callable[[Event], EventDescriptor], schedule=True ) -> dict[EventDescriptor, Stream]: """ Splits a single Stream into multiple sub-Streams, grouped by the output of group_fn(event). For example, group_fn could be: - lambda ev: ev.type - lambda ev: ev.type.modality - lambda ev: (ev.type.modality, ev.data.shape) Returns: A dictionary mapping each group key to a Stream of events belonging to that group. If 'schedule' is True, each sub-Stream is scheduled via create_stream(..., schedule=True). Example usage: substreams = group_streams(my_stream, lambda ev: ev.type) """ split_streams: defaultdict[EventDescriptor, list[Event]] = defaultdict(list) for ev in stream: group = group_fn(ev) split_streams[group].append(ev) for g, events in split_streams.items(): split_streams[g] = create_stream(events, stream.priority, schedule=schedule) return dict(split_streams) # Define Category for clarity Category = NewType("Category", Any) def schedule_events(stream: Stream, priority: list[Category]) -> list[int]: """ Schedule events based on their start time and priority using a topological sort algorithm. The priority list defines the ordering of categories. This function: 1. Pairs each event with its original index. 2. Sorts events by start time. 3. Builds a dependency graph based on overlapping events. 4. Uses a heap to perform a deterministic topological sort with tie-breakers. Raises: ValueError: If a cycle is detected in the events (i.e., no valid ordering exists). Returns: List[int]: A list of original indices representing the scheduled order of events. """ priority_index: dict[Category, int] = {category: idx for idx, category in enumerate(priority)} # Pair each event metadata with its original index events = [] for i, event in enumerate(stream.events): events.append( ( i, event.time[0], event.time[1], event.type, ) ) sorted_events = sorted(events, key=lambda e: e[1]) # sort by start time num_events = len(sorted_events) # Build dependency graph graph = defaultdict(set) indegree = {i: 0 for i in range(num_events)} for i in range(num_events): idx_i, start_i, end_i, category_i = sorted_events[i] prio_i = priority_index[category_i] for j in range(i + 1, num_events): idx_j, start_j, end_j, category_j = sorted_events[j] if start_j >= end_i: break if end_i > start_j and end_j > start_i: prio_j = priority_index[category_j] if prio_i < prio_j: graph[i].add(j) indegree[j] += 1 elif prio_i > prio_j: graph[j].add(i) indegree[i] += 1 # Use heap for deterministic tie-breakers: (start_time, priority, original_index) heap = [ ( sorted_events[i][1], priority_index[sorted_events[i][3]], sorted_events[i][0], i, ) for i in range(num_events) if indegree[i] == 0 ] heapq.heapify(heap) resolved_order = [] while heap: _, _, _, u = heapq.heappop(heap) resolved_order.append(u) for v in graph[u]: indegree[v] -= 1 if indegree[v] == 0: heapq.heappush( heap, ( sorted_events[v][1], priority_index[sorted_events[v][3]], sorted_events[v][0], v, ), ) if len(resolved_order) != num_events: raise ValueError("Cycle detected in events, cannot resolve order") return [sorted_events[i][0] for i in resolved_order] def compute_mrope_pos_tensor(ts: TensorStream, n_pos_dims: int = 3) -> torch.Tensor: """ Create a (batch, T, n_pos_dims) position tensor in one sweep. The first dim is the running “time” index, the rest are spatial (or 1-fillers). Args: ts : TensorStream n_pos_dims : total coordinate dimensions (default 3) Returns: torch.LongTensor - shape (batch_size, seq_len, n_pos_dims) """ # Manually iterate through streams and events like map_compact does, # but maintain cumulative time offset for each stream all_coords = [] for stream in ts.streams: # one Stream == one batch sample cumulative_offset = 0 # running time index for this stream for event in stream: # --- build coordinate grid for THIS event using itertools (no tensor ops) --- dims = (event.dims() or [1]) + [1] * (n_pos_dims - len(event.dims() or [])) # Create ranges for each dimension (similar to old _finalize implementation) first_dim = range(cumulative_offset, cumulative_offset + dims[0]) cumulative_offset += dims[0] # advance time for the next event other_dims = [range(d) for d in dims[1:]] # Use itertools.product to create all coordinate combinations full_coords = list(itertools.product(first_dim, *other_dims)) # Slice if the event is partial s, e = event.idx_range coords = full_coords[s:e] # Extend the flattened coordinate list all_coords.extend(coords) # Convert to tensor and reshape to (B, T, n_pos_dims) B, T = ts.shape return torch.tensor(all_coords, dtype=torch.long, device=ts.device).reshape(B, T, n_pos_dims) # ────────────────────────────────────────────────────────────────────────── # Generic event-labelling helper # ────────────────────────────────────────────────────────────────────────── def event_mask( ts: TensorStream, tag_fn: Callable[[Event], int | None], default: int = -1, ) -> torch.Tensor: """ Build a (batch, seq_len) LongTensor whose value for every *token* is given by `tag_fn(event)`, falling back to `default` when the function returns None. The work is done in a single pass via `map → compact`. """ def to_label(ev: Event) -> Any: label = tag_fn(ev) if label is None: label = default return [label] * ev.num_tokens() return ts.map_compact(to_label).squeeze(-1) def event_mask_by_key( ts: TensorStream, key: str, tag_index: dict[str, int], default: int = -1, ) -> torch.Tensor: """ Faster call-site syntax when you just want to look up `event.tags[key]` and map it through `tag_index`. """ return event_mask( ts, lambda ev: tag_index.get(ev.tags.get(key)) if key in ev.tags else None, default=default, ) def modality_mask(ts: TensorStream) -> torch.Tensor: return event_mask(ts, lambda ev: ev.type.value) ROLE_TO_IDX = { None: -1, "": -1, "agent": 0, "user": 1, "system": 2, # … add more if you like } def role_mask(ts: TensorStream) -> torch.Tensor: return event_mask(ts, lambda ev: ROLE_TO_IDX.get(ev.role, -1)) def tensor_stream_token_view(ts: TensorStream) -> torch.Tensor: """ Return a (B, T) token view by summing across the last dim of every event and flattening over the selected token range. """ def to_token_view(ev: Event) -> list[int]: # collapse all but the last dim, cast to long flat = ev.data.sum(dim=-1).long().reshape(-1) if ev.idx_range is not None: s, e = ev.idx_range return flat[s:e].tolist() else: return flat.tolist() return ts.map_compact(to_token_view) # shape (B, T) def reconstruct_tensor_stream_from_compact_dict( ts: TensorStream, compact_dict: dict[ModalityType, torch.Tensor] ) -> TensorStream: streams = [] for stream in ts.streams: event_list = [] for event in stream: new_event = event.shallow_copy() new_event.data = compact_dict[event.type][event.idx_range[0] : event.idx_range[1]] compact_dict[event.type] = compact_dict[event.type][event.num_tokens(partial=False) :] event_list.append(new_event) streams.append(Stream(event_list, priority=stream.priority)) return TensorStream(streams) def set_data( tensor_stream: TensorStream, stream_types: Iterable[ModalityType], roles: Iterable[str] = ROLE_TO_IDX.keys(), ) -> tuple[torch.Tensor, torch.Tensor]: """ Gathers data from a TensorStream according to the given stream types and returns (data, mask) where 'data' has valid entries for each requested stream type and 'mask' indicates which elements in 'data' are valid. NOTE: Currently assumes stream_types are text-based types, but can be extended. Args: tensor_stream (TensorStream): The input TensorStream which contains data for multiple modalities. stream_types (Iterable[ModalityType]): A list or iterable of modality types (e.g., TextType, VisionType, etc.) to retrieve from the TensorStream. exclude_non_agent_roles (bool, optional): If True, only include tokens with role="agent" or role=None in the loss calculation. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: - data: A tensor of the same shape as the internal metadata shape, containing valid entries from the given stream types. - mask: A boolean tensor of the same shape, where True indicates the corresponding element in 'data' is valid/used. """ # Retrieve indexing and shape metadata st_tensor = modality_mask(tensor_stream) # (B, T) modality-ids roles_tensor = role_mask(tensor_stream) # (B, T) role-ids # Create output data placeholders on the same device data = torch.zeros_like(st_tensor).to(tensor_stream.device) set_data_mask = torch.zeros_like(st_tensor).bool().to(tensor_stream.device).bool() per_modality_stream = group_streams(tensor_stream.flat_stream(), group_fn=lambda ev: ev.type, schedule=False) per_modality_compact_stream = {k: v.compact() for k, v in per_modality_stream.items()} # Fill 'data' and 'set_data_mask' for each requested stream type for st in stream_types: data_mask = st_tensor == st.value partial_mask = ( per_modality_stream[st] .map_compact( lambda ev: [int(ev.idx_range[0] <= i < ev.idx_range[1]) for i in range(ev.num_tokens(partial=False))] ) .bool() ) data[data_mask] = per_modality_compact_stream[st].reshape(-1)[partial_mask] roles_mask = torch.zeros_like(st_tensor).bool().to(tensor_stream.device).bool() for role in roles: roles_mask |= roles_tensor == ROLE_TO_IDX[role] data_mask = data_mask & roles_mask set_data_mask[data_mask] = True return data, set_data_mask def ts_slice(tensor_stream: TensorStream, start: int, end: int) -> TensorStream: """ Return a new TensorStream that contains *only* the tokens in the half-open interval ``[start, end)`` (0-based, inclusive-exclusive). """ B, T = tensor_stream.shape assert 0 <= start <= end <= T, f"slice [{start}, {end}) is out of bounds for sequence length {T}" sliced_streams: list[Stream] = [] for stream in tensor_stream.streams: # current position in tensor stream token dims curr_global_index = 0 new_events: list[Event] = [] # iterate over each of the events in the stream only selecting # the events that fall within the range for ev in stream: ev_len = ev.num_tokens() # ev_start, ev_end are the start and end indicies of the # event within the tensor stream token dim global_ev_start, global_ev_end = curr_global_index, curr_global_index + ev_len if global_ev_end <= start: # The event occurs before the start skip it and move the cursor # forward curr_global_index = global_ev_end continue if global_ev_start >= end: # event occurs after the end we can exit break # only consider the part of the event that falls within the range keep_from = max(0, start - global_ev_start) keep_to = min(ev_len, end - global_ev_start) part = ev.shallow_copy() if keep_from == 0 and keep_to == ev_len: # Event lies wholly inside the slice new_events.append(part) else: # Partial overlap → trim. assert ev.is_measured # update the local event ranges for the slices sliced_event_start = part.idx_range[0] + keep_from sliced_event_end = part.idx_range[0] + keep_to part.slice_tokens(sliced_event_start, sliced_event_end) new_events.append(part) curr_global_index = global_ev_end sliced_streams.append(create_stream(new_events, stream.priority, schedule=False)) return TensorStream(sliced_streams) class PixelShuffleSiglip2VisionConfig(Siglip2VisionConfig): """Vision configuration for Isaac with Pixel Shuffle support. Extends Siglip2VisionConfig with additional fields for pixel shuffle. """ model_type = "pixel_shuffle_siglip2" base_config_key = "vision_config" def __init__( self, pixel_shuffle_scale_factor: int = 1, num_patches: int = 256, **kwargs, ): super().__init__(**kwargs) # Add our custom fields self.pixel_shuffle_scale_factor = pixel_shuffle_scale_factor self.num_patches = num_patches def create_cumulative_seq_lengths(seq_sizes: torch.Tensor, device: torch.device) -> tuple[torch.Tensor, int]: """Create cumulative sequence lengths for variable-length attention.""" cu_seqlens = torch.zeros(len(seq_sizes) + 1, dtype=torch.int32, device=device) cu_seqlens[1:] = seq_sizes.cumsum(0) max_seqlen = int(seq_sizes.max().item()) if len(seq_sizes) > 0 else 0 return cu_seqlens, max_seqlen class Siglip2VariableSequenceEmbeddings(nn.Module): def __init__(self, config: PixelShuffleSiglip2VisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.patch_size = config.patch_size self.patch_embedding = nn.Linear( in_features=config.num_channels * self.patch_size * self.patch_size, out_features=self.embed_dim, ) self.num_patches = config.num_patches self.position_embedding_size = int(self.num_patches**0.5) self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) def positional_embeddings( self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor, torch.Tensor] ) -> torch.Tensor: # Prepare positional embeddings grid: (1, embed_dim, h, w) positional_embeddings = ( self.position_embedding.weight.reshape(self.position_embedding_size, self.position_embedding_size, -1) .permute(2, 0, 1) .unsqueeze(0) ) _seq_patches, _seq_sizes, spatial_shapes = packed_seq_patches pos_embeds_list = [] mode = "bilinear" align_corners = False antialias = True for spatial_shape in spatial_shapes: height, width = spatial_shape # Guard to ensure height and width are positive for torch.compile if height > 0 and width > 0: resized_pos_embed = F.interpolate( positional_embeddings, size=(height, width), mode=mode, align_corners=align_corners, antialias=antialias, ) # Reshape from (1, embed_dim, height, width) to (height*width, embed_dim) resized_pos_embed = resized_pos_embed.reshape(self.embed_dim, height * width).transpose(0, 1) else: # Fallback - should never happen in practice resized_pos_embed = positional_embeddings.reshape( self.embed_dim, self.position_embedding_size * self.position_embedding_size ).transpose(0, 1)[: height * width] pos_embeds_list.append(resized_pos_embed) # Concatenate all positional embeddings along the sequence dimension pos_embeds = torch.cat(pos_embeds_list, dim=0) return pos_embeds def forward(self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor, torch.Tensor]): seq_patches, _seq_sizes, _spatial_shapes = packed_seq_patches # Apply patch embeddings target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(seq_patches.to(dtype=target_dtype)) pos_embeds = self.positional_embeddings(packed_seq_patches) # Add positional embeddings to patch embeddings embeddings = patch_embeds + pos_embeds return embeddings class Siglip2VariableLengthAttention(nn.Module): """Custom attention that supports variable-length sequences with flash attention.""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward(self, hidden_states, cu_seqlens=None, max_seqlen=None): batch_size, seq_len, _ = hidden_states.size() # For variable-length attention, we need to reshape to (total_tokens, embed_dim) if batch_size != 1: raise ValueError("Variable-length attention expects batch_size=1 for packed sequences") hidden_states = hidden_states.squeeze(0) # Remove batch dimension: (seq_len, embed_dim) # Store original dtype orig_dtype = hidden_states.dtype # 1. Linear projections Q = self.q_proj(hidden_states) # (seq_len, embed_dim) K = self.k_proj(hidden_states) # (seq_len, embed_dim) V = self.v_proj(hidden_states) # (seq_len, embed_dim) # 2. Reshape for multi-head attention: (seq_len, n_heads, head_dim) Q = Q.view(-1, self.num_heads, self.embed_dim // self.num_heads) K = K.view(-1, self.num_heads, self.embed_dim // self.num_heads) V = V.view(-1, self.num_heads, self.embed_dim // self.num_heads) # 3. Apply variable-length attention using flash attention attn_output, _, _, _, _ = torch.ops.aten._flash_attention_forward( query=Q, key=K, value=V, cum_seq_q=cu_seqlens, cum_seq_k=cu_seqlens, max_q=max_seqlen, max_k=max_seqlen, dropout_p=self.dropout if self.training else 0.0, is_causal=False, return_debug_mask=False, scale=self.scale, window_size_left=-1, window_size_right=-1, alibi_slopes=None, ) # 4. Reshape attention output from (seq_len, n_heads, head_dim) to (seq_len, embed_dim) attn_output = attn_output.reshape(seq_len, self.embed_dim) # 5. Convert back to original dtype if needed if attn_output.dtype != orig_dtype: attn_output = attn_output.to(orig_dtype) # 6. Project output attn_output = self.out_proj(attn_output) # (seq_len, embed_dim) # 7. Add back batch dimension for compatibility attn_output = attn_output.unsqueeze(0) # (1, seq_len, embed_dim) return attn_output, None class IsaacSiglip2EncoderLayer(nn.Module): """Siglip2 encoder layer with variable-length attention.""" def __init__(self, config: PixelShuffleSiglip2VisionConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = Siglip2VariableLengthAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = Siglip2MLP(config) # Use HF's Siglip2MLP self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor = None, max_seqlen: int = None, ) -> tuple[torch.FloatTensor]: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return (hidden_states,) class IsaacEncoder(nn.Module): """Encoder using Isaac encoder layers with variable-length attention support.""" def __init__(self, config: PixelShuffleSiglip2VisionConfig): super().__init__() self.config = config self.layers = nn.ModuleList([IsaacSiglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, inputs_embeds, cu_seqlens: torch.Tensor | None = None, max_seqlen: int | None = None, output_hidden_states: bool = False, ): all_hidden_states = () if output_hidden_states else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, cu_seqlens, max_seqlen, ) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return hidden_states, all_hidden_states, None def create_pixel_shuffle_index_map( seq_sizes: torch.Tensor, token_grids: torch.Tensor, scale_factor: int = 1, device: torch.device | None = None, ) -> torch.Tensor: """ Build a gather-index map that tells us, for every *output* token after pixel-shuffle, which `scale_factor**2` *input* tokens are being merged. Args ---- seq_sizes : (num_images,) - #patches in each image (row-major order) token_grids : (num_images,2) - (height, width) for every image scale_factor : spatial down-scale factor (≥2) device : (optional) overrides `seq_sizes.device` Returns ------- gather_idx : (new_total_seq_len, scale_factor**2) int64 tensor. gather_idx[i, j] is the *flat* index into the *original* packed sequence for the j-th sub-patch that forms the i-th output token. """ if device is None: device = seq_sizes.device r = int(scale_factor) if r < 2: raise ValueError("`scale_factor` must be ≥ 2") # Safety: all spatial dims must be divisible by r # Cannot run under torch compile fullgraph mode hence if not torch.compiler.is_compiling(): if not ((token_grids[:, 0] % r == 0).all() and (token_grids[:, 1] % r == 0).all()): raise AssertionError( f"Every (H,W) in `token_grids` must be divisible by scale_factor={r}, got {token_grids.tolist()}" ) gather_chunks: list[torch.Tensor] = [] tok_offset = 0 for seq_len, (h, w) in zip(seq_sizes.tolist(), token_grids.tolist(), strict=False): # Build the (H, W) grid of flat indices for this image grid = torch.arange(seq_len, device=device, dtype=torch.int64) + tok_offset grid = grid.view(h, w) # (H, W) # -------- identical ordering to your fixed-res routine -------- # Step 1: split width into blocks of r grid = grid.view(h, w // r, r) # (H, W/r, r) # Step 2: now split height into blocks of r grid = grid.view(h // r, r, w // r, r) # (H/r, r, W/r, r) # Step 3: final permutation to (H/r, W/r, r, r) grid = grid.permute(0, 2, 1, 3).contiguous() # (H/r, W/r, r, r) # Step 4: each (r, r) block forms one output token gather_chunks.append(grid.reshape(-1, r * r)) # (H*W / r², r²) tok_offset += seq_len # Concatenate over all images in the packed batch gather_idx = torch.cat(gather_chunks, dim=0) # (Σ_i HᵢWᵢ/r², r²) return gather_idx def pixel_shuffle_varlen( x: torch.Tensor, token_grids: torch.Tensor, scale_factor: int = 1, ) -> torch.Tensor: r"""Apply pixel shuffle to a packed vision sequence without unpacking per image. Args: x (`torch.Tensor`): Concatenated vision embeddings. Accepts `(seq_len, hidden_size)` or `(1, seq_len, hidden_size)` shapes produced by stacking image patches. token_grids (`torch.Tensor`): Integer tensor of shape `(num_images, 2)` whose rows give the `(height, width)` patch grid sizes corresponding to each image segment inside `x`. scale_factor (`int`, *optional*, defaults to 1): Spatial down-sampling factor specific to pixel shuffle. Values greater than one merge `scale_factor**2` neighboring patches into a single embedding channel-group. Returns: `torch.Tensor`: Pixel-shuffled embeddings with shape matching the input convention: `(seq_len, hidden_size * scale_factor**2)` when the input was 2D, or `(1, seq_len, hidden_size * scale_factor**2)` if the singleton batch dimension was present. Raises: ValueError: If more than one batch item is provided. """ keep_batch_dim = x.dim() == 3 if keep_batch_dim: if x.size(0) != 1: raise AssertionError("Packed sequence is expected to have batch_size == 1") x_ = x.squeeze(0) # (seq, embed) else: x_ = x # (seq, embed) embed_dim = x_.size(-1) r = int(scale_factor) # Calculate seq_sizes from token_grids seq_sizes = torch.prod(token_grids, dim=-1) # Build index map and gather in one go gather_idx = create_pixel_shuffle_index_map( seq_sizes=seq_sizes, token_grids=token_grids, scale_factor=r, device=x_.device, ) # (new_seq, r²) # Gather → (new_seq, r², embed_dim) gathered = x_[gather_idx] # fancy indexing keeps gradient # Merge the r² group dimension into channels to finish the shuffle out = gathered.reshape(gathered.size(0), embed_dim * r * r) # Restore batch dimension if needed if keep_batch_dim: out = out.unsqueeze(0) return out class Siglip2SequenceVisionTransformer(nn.Module): def __init__(self, config: PixelShuffleSiglip2VisionConfig): super().__init__() self.config = config self.embeddings = Siglip2VariableSequenceEmbeddings(config) self.encoder = IsaacEncoder(config) self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pixel_shuffle_scale_factor = config.pixel_shuffle_scale_factor def forward(self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor]): seq_patches, token_grids = packed_seq_patches seq_sizes = torch.prod(token_grids, dim=-1) # Get embeddings from packed sequence hidden_states = self.embeddings((seq_patches, seq_sizes, token_grids)) # Add a pseudo batch dimension for the encoder hidden_states = hidden_states.unsqueeze(0) # Generate cumulative sequence lengths for variable-length attention cu_seqlens, max_seqlen = create_cumulative_seq_lengths(seq_sizes, hidden_states.device) # Pass through encoder with variable-length attention parameters hidden_states, _, _ = self.encoder( inputs_embeds=hidden_states, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) # Apply final layer normalization hidden_states = self.post_layernorm(hidden_states) if self.pixel_shuffle_scale_factor > 1: hidden_states = pixel_shuffle_varlen( x=hidden_states, token_grids=token_grids, scale_factor=self.pixel_shuffle_scale_factor, ) # Remove the pseudo batch dimension we added earlier hidden_states = hidden_states.squeeze(0) # Return the full sequence of embeddings return hidden_states # ============================================================================ # Configuration # ============================================================================ MAX_PIXELS = 60_000_000 # 60-megapixel ceiling ≈ 8200 × 7300 px # Vision preprocessing constants VISION_MEAN = (0.5, 0.5, 0.5) VISION_STD = (0.5, 0.5, 0.5) VISION_SCALE = 1 / 255 def _make_writeable(arr: np.ndarray) -> np.ndarray: """Return *arr* itself if it is already writeable, otherwise try to flip the write flag in-place and finally fall back to `arr.copy()`. This guarantees the buffer handed to `torch.from_numpy()` is always writeable, silencing the PyTorch warning about undefined behaviour. """ if arr.flags.writeable: return arr # First, try the cheap path — in-place flag toggle (works for mmap'd arrays # and some shared memory buffers): try: arr.setflags(write=True) return arr # success: no data copy except ValueError: # Buffer is inherently read-only (e.g. backed by PyAV / PIL): make copy return arr.copy() def extract_image_pil(image: PIL.Image.Image) -> torch.Tensor | None: if image.width * image.height > MAX_PIXELS: raise ValueError(f"Image (w={image.width}, h={image.height}) > MAX=`{MAX_PIXELS}`") img = image if image.mode == "RGB" else image.convert("RGB") arr = np.asarray(img) arr = _make_writeable(arr) return torch.from_numpy(arr) def get_image_size_for_max_num_patches( image_height: int, image_width: int, patch_size: int, max_num_patches: int, min_num_patches: int | None = None, eps: float = 1e-5, pixel_shuffle_scale: int = 1, ) -> tuple[int, int]: r"""Compute a target resolution whose patch grid satisfies patching parametrization. Args: image_height (`int`): Height in pixels of the source image prior to any resizing. image_width (`int`): Width in pixels of the source image prior to any resizing. patch_size (`int`): Size of the square patch used by the vision encoder. max_num_patches (`int`): Upper bound on `(height / patch_size) * (width / patch_size)` after resizing. min_num_patches (`int`, *optional*): Lower bound on the number of patches. When provided the image will be scaled up if necessary. eps (`float`, *optional*, defaults to 1e-5): Convergence tolerance for the internal binary search to determing the target dimensions. pixel_shuffle_scale (`int`, *optional*, defaults to 1): Additional stride multiplier applied when pixel shuffle later reduces spatial resolution. Returns: `tuple[int, int]`: Height and width (in pixels) that are multiples of `patch_size * pixel_shuffle_scale` and respect both the maximum and optional minimum patch-count constraints. """ def get_scaled_image_size(scale, original_size, patch_size, pixel_shuffle_scale): scaled_size = scale * original_size divisor = patch_size * pixel_shuffle_scale scaled_size = math.ceil(scaled_size / divisor) * divisor scaled_size = max(divisor, scaled_size) return int(scaled_size) # Ensure divisibility divisor = patch_size * pixel_shuffle_scale adjusted_height = math.ceil(image_height / divisor) * divisor adjusted_height = max(divisor, adjusted_height) adjusted_width = math.ceil(image_width / divisor) * divisor adjusted_width = max(divisor, adjusted_width) num_patches = (adjusted_height / patch_size) * (adjusted_width / patch_size) if min_num_patches is not None and num_patches < min_num_patches: # Scale up scale_min, scale_max = 1.0, 100.0 while (scale_max - scale_min) >= eps: scale = (scale_min + scale_max) / 2 target_height = get_scaled_image_size(scale, image_height, patch_size, pixel_shuffle_scale) target_width = get_scaled_image_size(scale, image_width, patch_size, pixel_shuffle_scale) num_patches = (target_height / patch_size) * (target_width / patch_size) if num_patches >= min_num_patches: scale_max = scale else: scale_min = scale scale = scale_max target_height = get_scaled_image_size(scale, image_height, patch_size, pixel_shuffle_scale) target_width = get_scaled_image_size(scale, image_width, patch_size, pixel_shuffle_scale) return target_height, target_width elif num_patches <= max_num_patches: return adjusted_height, adjusted_width else: # Scale down scale_min, scale_max = eps / 10, 1.0 while (scale_max - scale_min) >= eps: scale = (scale_min + scale_max) / 2 target_height = get_scaled_image_size(scale, image_height, patch_size, pixel_shuffle_scale) target_width = get_scaled_image_size(scale, image_width, patch_size, pixel_shuffle_scale) num_patches = (target_height / patch_size) * (target_width / patch_size) if num_patches <= max_num_patches: scale_min = scale else: scale_max = scale scale = scale_min target_height = get_scaled_image_size(scale, image_height, patch_size, pixel_shuffle_scale) target_width = get_scaled_image_size(scale, image_width, patch_size, pixel_shuffle_scale) return target_height, target_width _MEAN_TENSOR = torch.tensor(VISION_MEAN, dtype=torch.float32).view(1, 1, 1, -1) _STD_TENSOR = torch.tensor(VISION_STD, dtype=torch.float32).view(1, 1, 1, -1) def prepare_image_tensor( image: torch.Tensor, scale: float = VISION_SCALE, ) -> torch.Tensor: r"""Standardize RGB images prior to patch extraction via rescaling and whitening. Args: image (`torch.Tensor`): Tensor with shape `(..., height, width, 3)` containing RGB values. The tensor is converted to floating point if needed. scale (`float`, *optional*, defaults to `VISION_SCALE`): Scalar multiplier applied before normalization. Returns: `torch.Tensor`: Normalized tensor with the same shape as the input and dtype `torch.float32`. """ if not torch.is_floating_point(image): image = image.float() rescaled = image * scale # Use precomputed tensors and move to the correct device if needed mean_tensor = _MEAN_TENSOR.to(image.device) std_tensor = _STD_TENSOR.to(image.device) normalized = (rescaled - mean_tensor) / std_tensor return normalized def patchify_vision(image: torch.Tensor, patch_size: int) -> torch.Tensor: r"""Convert normalized images into flattened ViT-style patches. Args: image (`torch.Tensor`): Tensor of shape `(num_images, height, width, channels)`. patch_size (`int`): Edge length of the square patches Returns: `torch.Tensor`: Patch tensor where each position stores the flattened pixels belonging to that patch. Raises: ValueError: If `height` or `width` is not divisible by `patch_size`. """ num_images, height, width, channels = image.shape if height % patch_size or width % patch_size: raise ValueError(f"Dimensions of images {image.shape} are not divisible by patch_size={patch_size}.") patches = image.reshape(num_images, height // patch_size, patch_size, width // patch_size, patch_size, channels) patches = patches.permute(0, 1, 3, 2, 4, 5) patches = patches.reshape(num_images, height // patch_size, width // patch_size, channels * patch_size * patch_size) return patches def process_vision_for_patches( images: torch.Tensor, patch_size: int, max_num_patches: int, min_num_patches: int | None = None, pixel_shuffle_scale: int = 1, ) -> tuple[torch.Tensor, list[int]]: r"""Resize, normalize, and patchify RGB images for the vision encoder. Args: images (`torch.Tensor`): Either `(height, width, channels)` for a single image or `(num_images, height, width, channels)` for a batch. Channels are expected to be RGB. patch_size (`int`): Edge length of square patches; implictly controls resize grid granularity. max_num_patches (`int`): Maximum number of patches allowed after resizing. min_num_patches (`int`, *optional*): Minimum number of patches. If provided, the routine upsamples images as needed to satisfy the lower bound. pixel_shuffle_scale (`int`, *optional*, defaults to 1): pixel shuffle scale factor; influences the target grid that the function produces. Returns: `tuple[torch.Tensor, list[int]]`: A pair `(patches, dims_virtual)` where `patches` has shape `(num_images, target_h / patch_size, target_w / patch_size, channels * patch_size**2)` and `dims_virtual` encodes effective `(images, height, width)` dimensions after optional pixel shuffling. """ # Add batch dim if single image if images.dim() == 3: images = images.unsqueeze(0) # Permute to channel first for resize images = images.permute(0, 3, 1, 2) # Get target dimensions _, _, orig_height, orig_width = images.shape target_height, target_width = get_image_size_for_max_num_patches( orig_height, orig_width, patch_size, max_num_patches, min_num_patches=min_num_patches, pixel_shuffle_scale=pixel_shuffle_scale, ) # Resize images = F.interpolate( images, size=(target_height, target_width), mode="bilinear", align_corners=False, ) # Back to channel last images = images.permute(0, 2, 3, 1) # Normalize images = prepare_image_tensor(images) # Patchify patches = patchify_vision(images, patch_size=patch_size) # Calculate dimensions for the patches n_images, h_patches, w_patches, _ = patches.shape dims_virtual = ( [1, h_patches, w_patches] if pixel_shuffle_scale == 1 else [1, h_patches // pixel_shuffle_scale, w_patches // pixel_shuffle_scale] ) return patches, dims_virtual def precompute_inv_freq(theta: float, dim: int) -> torch.Tensor: """ Returns shape (dim//2,). """ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) return inv_freq # type: ignore[return-value] def precompute_cos_sin_3d( position_ids: torch.Tensor, # shape (3, B, T) inv_freq: torch.Tensor, # shape (dim//2,) mrope_half_section: list[int], # sum to dim//2 ) -> tuple[torch.Tensor, torch.Tensor]: r"""Generate 3D rotary embeddings for multi-axis positions. Args: position_ids (`torch.Tensor`): Tensor of shape `(3, batch_size, seq_len)` containing positional indices for the x/y/t axes. inv_freq (`torch.Tensor`): Precomputed inverse frequency vector used to derive rotary phases. mrope_half_section (`list[int]`): Sizes the axis-specific frequency blocks. Returns: `tuple[torch.Tensor, torch.Tensor]`: Cosine and sine tensors, each of shape `(batch_size, seq_len, dim)`, ready to be passed into rotary attention layers. """ B = position_ids.shape[1] T = position_ids.shape[2] dim_half = inv_freq.shape[0] device = position_ids.device # Initialize with full dimension (not half) to match LLaMA cos_3d = torch.zeros((B, T, dim_half * 2), dtype=torch.float32, device=device) sin_3d = torch.zeros((B, T, dim_half * 2), dtype=torch.float32, device=device) offset = 0 for d in range(3): block_size = mrope_half_section[d] freq_slice = inv_freq[offset : offset + block_size] # shape => (block_size,) # shape => (B, T, block_size) phase = position_ids[d].unsqueeze(-1).float() * freq_slice cos_part = phase.cos() sin_part = phase.sin() # Duplicate values for both halves of the dimension cos_3d[:, :, offset : offset + block_size] = cos_part cos_3d[:, :, dim_half + offset : dim_half + offset + block_size] = cos_part sin_3d[:, :, offset : offset + block_size] = sin_part sin_3d[:, :, dim_half + offset : dim_half + offset + block_size] = sin_part offset += block_size return cos_3d, sin_3d class RopeScaling(TypedDict, total=False): rope_type: str factor: float mrope_section: list[int] mrope_interleaved: bool low_freq_factor: float high_freq_factor: float original_max_position_embeddings: int class IsaacConfig(Qwen3Config): """Configuration class for Isaac multimodal model.""" model_type = "isaac" sub_configs = {"vision_config": PixelShuffleSiglip2VisionConfig} def __init__( self, vision_config=None, vision_patch_size: int = 16, vision_max_num_patches: int = 256, vision_min_num_patches: int | None = None, pixel_shuffle_scale: int = 1, max_sequence_length: int = 16384, vision_token: str = "", **kwargs, ): super().__init__(**kwargs) # Handle vision config - either dict or PixelShuffleSiglip2VisionConfig instance if isinstance(vision_config, dict): self.vision_config = self.sub_configs["vision_config"](**vision_config) elif vision_config is None: self.vision_config = self.sub_configs["vision_config"]() else: self.vision_config = vision_config # EventStreamProcessor parameters (for backward compatibility) self.video_patch_size = vision_patch_size self.vision_max_num_patches = vision_max_num_patches self.vision_min_num_patches = vision_min_num_patches self.pixel_shuffle_scale = pixel_shuffle_scale # Processing parameters self.max_sequence_length = max_sequence_length self.vision_token = vision_token # ============================================================================ # Processor Components # ============================================================================ def create_text_event(tokenizer: AutoTokenizer, text: str, time: float = 0.0) -> Event: r"""Wrap a text into an `Event` compatible with the multimodal TensorStream. Args: tokenizer (`AutoTokenizer`): Tokenizer used to convert text into model vocabulary ids. text (`str`): Plain-text fragment to encode. time (`float`, *optional*, defaults to 0.0): Timeline coordinate associated with the event. Both start and end times use the same value because text segments are instantaneous in the scheduler. Returns: `Event`: Event carrying a `(num_tokens, 1)` tensor of token ids with matching metadata so that downstream processors can compute modality-specific embeddings. """ tokens = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").squeeze(0) # Calculate dimensions for the event num_tokens = len(tokens) dims_virtual = [num_tokens, 1] # [sequence_length, 1] dims_real = dims_virtual.copy() # Ensure tokens has the right shape for tensor_stream_token_view # It expects a 2D tensor where sum(dim=-1) gives the token IDs if tokens.dim() == 1: tokens = tokens.unsqueeze(-1) return Event( data=tokens, type=TextType.text, time=(time, time), dims_virtual=dims_virtual, dims_real=dims_real, idx_range=(0, num_tokens), ) # ============================================================================ # Processor # ============================================================================ class IsaacProcessor(ProcessorMixin): attributes = ["tokenizer"] tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") def __init__( self, tokenizer: Qwen2Tokenizer, config: IsaacConfig | dict, ): super().__init__(tokenizer) self.tokenizer = tokenizer if isinstance(config, dict): config = IsaacConfig(**config) self.config = config # Use vision token from config self.vision_token = config.vision_token # Processing parameters self.max_sequence_length = config.max_sequence_length # Vision processing parameters self.patch_size = config.video_patch_size self.max_num_patches = config.vision_max_num_patches self.min_num_patches = config.vision_min_num_patches self.pixel_shuffle_scale = config.pixel_shuffle_scale def apply_chat_template( self, messages: list[dict[str, Any]], tokenize: bool = False, add_generation_prompt: bool = False, **kwargs, ) -> Any: return self.tokenizer.apply_chat_template( messages, tokenize=tokenize, add_generation_prompt=add_generation_prompt, **kwargs ) def build_event_stream_simple( self, text: str, images: list[PIL.Image.Image] | None = None, ) -> Stream: events = [] # Process text and images # Find all occurrences of vision token pattern = re.escape(self.vision_token) parts = re.split(f"({pattern})", text) # Keep the delimiter in the result image_idx = 0 for current_time, part in enumerate(parts): if part == self.vision_token: # Replace vision token with image event if image_idx < len(images): # Create vision event from PIL image image_tensor = extract_image_pil(images[image_idx]) if image_tensor is not None: # Create a vision event with the image tensor vision_event = Event( data=image_tensor.unsqueeze(0), # HWC format from extract_image_pil type=VisionType.image, # I-frame time=(current_time, current_time), ) events.append(vision_event) image_idx += 1 elif part: # Non-empty text part # tokens = self.text_processor.tokenize(part, add_special_tokens=False) text_event = create_text_event(self.tokenizer, part, time=current_time) events.append(text_event) # Process vision events if any if any(event.type == VisionType.image for event in events): # Separate text and vision events for processing text_events = [event for event in events if event.type == TextType.text] vision_events = [event for event in events if event.type == VisionType.image] # Process vision events using functional approach processed_vision_events = [] for vision_event in vision_events: # Process the vision data patches, dims_virtual = process_vision_for_patches( vision_event.data.squeeze(0), # Remove the extra dimension patch_size=self.patch_size, max_num_patches=self.max_num_patches, min_num_patches=self.min_num_patches, pixel_shuffle_scale=self.pixel_shuffle_scale, ) # Update event with processed data vision_event.data = patches.unsqueeze(1) # Add back frame dimension vision_event.dims_virtual = dims_virtual vision_event.dims_real = ( dims_virtual if self.pixel_shuffle_scale == 1 else [ dims_virtual[0], dims_virtual[1] * self.pixel_shuffle_scale, dims_virtual[2] * self.pixel_shuffle_scale, ] ) vision_event.idx_range = (0, math.prod(dims_virtual)) # Flatten the patches vision_event.data = vision_event.data.reshape(-1, vision_event.data.shape[-1]) processed_vision_events.append(vision_event) events = text_events + processed_vision_events # Create stream without scheduling (events already in order) return create_stream(events, priority=[TextType.text, VisionType.image], schedule=True) def __call__( self, text: Union[str, list[str]], images: Union[PIL.Image.Image, list[PIL.Image.Image], None] = None, return_tensors: str | TensorType | None = TensorType.PYTORCH, **kwargs, ) -> BatchFeature: """ Process text and images into TensorStream format. Args: text: Input text or list of texts with vision tokens images: PIL image or list of images (optional) return_tensors: Format for output tensors Returns: BatchFeature with input_ids and tensor_stream """ # Normalize inputs to lists if isinstance(text, str): texts = [text] else: texts = text if images is not None: if isinstance(images, PIL.Image.Image): images_list = [images] else: images_list = images else: images_list = None if len(texts) != 1: raise ValueError("IsaacProcessor currently supports batch_size=1") if images_list is not None: # Count vision tokens in text to validate image count vision_token_count = texts[0].count(self.vision_token) if vision_token_count != len(images_list): raise ValueError( f"Number of {self.vision_token} tokens in text ({vision_token_count}) " f"must match number of images ({len(images_list)})" ) # Build event stream stream = self.build_event_stream_simple( text=texts[0], images=images_list, ) # Create TensorStream tensor_stream = TensorStream([stream]) # Slice to max length if needed _, T = tensor_stream.shape if T > self.max_sequence_length: tensor_stream = ts_slice(tensor_stream, start=T - self.max_sequence_length, end=T) # Get token view tokens = tensor_stream_token_view(tensor_stream) if return_tensors in (TensorType.PYTORCH, "pt"): input_ids = torch.as_tensor(tokens, dtype=torch.long) else: input_ids = tokens data = { "input_ids": input_ids, "tensor_stream": tensor_stream, } return BatchFeature(data=data) # ============================================================================ # Model # ============================================================================ def compute_position_ids_input_ids(input_ids: torch.Tensor) -> torch.Tensor: r"""Create 3D positional indices for token input. Args: input_ids (`torch.Tensor`): Tensor of shape `(batch_size, seq_len)` containing token ids. Returns: `torch.Tensor`: Positional indices with shape `(batch_size, seq_len, 3)` where each channel duplicates the 1D position so it can be consumed by the 3-axis MRoPE rotary embedding. """ batch_size, seq_length = input_ids.shape position_ids = torch.arange(seq_length, device=input_ids.device) position_ids = position_ids.view(1, -1).expand(batch_size, -1) position_ids = position_ids.unsqueeze(2).expand(-1, -1, 3) # Add 3D for MRoPE return position_ids class IsaacRotaryEmbedding(nn.Module): def __init__(self, config: IsaacConfig, device=None): super().__init__() # Extract dimensions from config self.hidden_size = config.hidden_size self.num_attention_heads = config.num_attention_heads self.head_dim = config.head_dim # Get rope_scaling config - use direct access when available rope_scaling = getattr(config, "rope_scaling", None) or {} # Read RopeScaling parameters self.rope_type = rope_scaling.get("rope_type", "default") self.mrope_section = [ self.head_dim // 4, # 2x more for temporal dim self.head_dim // 8, self.head_dim // 8, ] rope_base = getattr(config, "rope_theta", 10000.0) inv_freq = precompute_inv_freq(rope_base, self.head_dim) self.register_buffer("inv_freq", inv_freq, persistent=False) def forward(self, position_ids: torch.Tensor, modality_tensor: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: with torch.no_grad(): # Ensure non-spatial tokens have 1D rotation equivalence not_spatial = ~(modality_tensor == VisionType.image.value) # shape is [N, 1] data_1d = position_ids[not_spatial][..., 0].unsqueeze(-1) # now broadcast it from [N, 1] -> [N, D] so it matches pos[not_spatial] exactly data_1d = data_1d.expand(-1, position_ids.shape[-1]) # expand along the last dim position_ids = position_ids.clone() # Clone to avoid warning about in-place operations on expanded tensors position_ids[not_spatial] = data_1d position_ids = position_ids.permute(2, 0, 1) # pos dim first -> (3, B, L) cos, sin = precompute_cos_sin_3d(position_ids, self.inv_freq, self.mrope_section) return cos, sin class IsaacModel(Qwen3Model): def __init__(self, config: IsaacConfig): super().__init__(config) text_cfg = getattr(config, "get_text_config", lambda: config)() self.layers = torch.nn.ModuleList( [Qwen3DecoderLayer(text_cfg, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.rotary_emb = IsaacRotaryEmbedding(config, device=self.device) vision_cfg = config.vision_config if vision_cfg is None: raise ValueError("IsaacConfig should always have vision_config") hidden_dim = vision_cfg.hidden_size * (vision_cfg.pixel_shuffle_scale_factor**2) self.vision_embedding = nn.Sequential( Siglip2SequenceVisionTransformer(vision_cfg), nn.Linear( hidden_dim, 4 * hidden_dim, bias=False, ), nn.SiLU(), nn.Linear(4 * hidden_dim, config.hidden_size, bias=False), ) # Dispatch table for TensorStream balanced embedding (text + vision) self.embed_fns = { TextType: self.embed_text_tokens, VisionType: self.embed_vision, } def embed_text_tokens(self, token_ids: torch.Tensor) -> torch.Tensor: """Embed text tokens, squeezing singleton dimensions.""" # Text events are shaped as (..., 1); squeeze the singleton index dim h = self.embed_tokens(token_ids) if h.dim() >= 2 and h.size(-2) == 1: h = h[..., 0, :] return h def embed_vision(self, vision_tokens: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor: """Embed vision tokens using the vision encoder.""" # vision tokens is (seq_patches, token_grids) return self.vision_embedding(vision_tokens) def embed_stream(self, tensor_stream: TensorStream) -> torch.Tensor: """ Embed each modality stream independently, preserving the original TensorStream structure. """ flat_stream = tensor_stream.flat_stream() per_modality_stream = group_streams(flat_stream, group_fn=lambda ev: ev.type, schedule=False) per_modality_compact_stream = {k: v.compact() for k, v in per_modality_stream.items()} # Collect per-event grids for vision tokens (H, W like dims sans time) token_grids = defaultdict(list) for stream in tensor_stream.streams: for event in stream: token_grids[event.type].append(event.dims(virtual=False)) embedded_compact = {} for stream_type, modality_payload_tensor in per_modality_compact_stream.items(): if stream_type.modality == VisionType: # Build a (N_events, 2) grid tensor with spatial dims only grids = token_grids.get(stream_type, []) if len(grids) == 0: input_tensor = modality_payload_tensor else: token_grids_tensor = torch.tensor(grids, dtype=torch.long, device=tensor_stream.device)[:, 1:] input_tensor = (modality_payload_tensor, token_grids_tensor) embedded_compact[stream_type] = self.embed_fns[stream_type.modality](input_tensor) else: embedded_compact[stream_type] = self.embed_fns[stream_type.modality](modality_payload_tensor) # Reconstruct a TensorStream with embedded payloads and compact embedded_ts = reconstruct_tensor_stream_from_compact_dict(tensor_stream, embedded_compact) h = embedded_ts.compact() # (B, T, D) return h def forward( self, input_ids: torch.LongTensor | None = None, tensor_stream: TensorStream | None = None, attention_mask: torch.Tensor | None = None, position_ids: torch.LongTensor | None = None, modality_tensor: torch.LongTensor | None = None, past_key_values: list[torch.FloatTensor] | None = None, inputs_embeds: torch.FloatTensor | None = None, use_cache: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, cache_position: torch.LongTensor | None = None, **kwargs, ) -> tuple | BaseModelOutputWithPast: """ Forward pass with MRoPE position embeddings. Computes position embeddings once and passes them through all layers. """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Get inputs if tensor_stream is not None and inputs_embeds is not None: raise ValueError("You cannot specify both tensor_stream and inputs_embeds") elif tensor_stream is not None: # Embed TensorStream directly inputs_embeds = self.embed_stream(tensor_stream) # Create modality tensor if not provided if modality_tensor is None: modality_tensor = modality_mask(tensor_stream) elif input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: inputs_embeds = self.embed_tokens(input_ids) # Create text modality tensor if not provided if modality_tensor is None: batch_size, seq_length = input_ids.shape modality_tensor = torch.full( (batch_size, seq_length), TextType.text.value, device=input_ids.device, dtype=torch.long ) elif inputs_embeds is None: raise ValueError("You have to specify either tensor_stream, input_ids or inputs_embeds") # Create default position_ids if not provided if position_ids is None: if tensor_stream is not None: position_ids = compute_mrope_pos_tensor(tensor_stream) # (B,L,3) else: position_ids = compute_position_ids_input_ids(input_ids) # Compute MRoPE position embeddings if we have custom rotary_emb cos, sin = self.rotary_emb(position_ids, modality_tensor) cos = cos.to(inputs_embeds.dtype) sin = sin.to(inputs_embeds.dtype) # Prepare attention mask if attention_mask is not None: attention_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, False ) # Initialize hidden states hidden_states = inputs_embeds for decoder_layer in self.layers: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=(cos, sin), **kwargs, ) hidden_states = layer_outputs[0] if isinstance(layer_outputs, tuple) else layer_outputs # Final layer norm hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: Qwen3Config, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`Qwen3Config`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin): """Isaac multimodal model for conditional generation.""" config_class = IsaacConfig def __init__(self, config: IsaacConfig): Qwen3PreTrainedModel.__init__(self, config) self.model = IsaacModel(config) # Use our custom model self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Tracks rotary position offsets computed during a full forward pass so decode steps can reuse them. self.rope_deltas = None self.config = config def get_rope_index( self, input_ids: torch.Tensor | None, tensor_stream: TensorStream | None, attention_mask: torch.Tensor | None, ) -> tuple[torch.Tensor, torch.Tensor]: """Compute MRoPE position ids from a TensorStream (or 1D fallback). Returns (position_ids, rope_deltas). position_ids is (B,L,3) for MRoPE. rope_deltas is (B,1) used to advance positions in decode. """ # tensor_stream present: compute 3D coords if tensor_stream is None and input_ids is None: raise ValueError("`tensor_stream` or `input_ids` must be provided to compute rope indices") if tensor_stream is not None: pos_3d = compute_mrope_pos_tensor(tensor_stream) # (B,L,3) else: pos_3d = compute_position_ids_input_ids(input_ids) B, L, _ = pos_3d.shape # Max position per batch across the 3 planes and sequence dimension: (B,) m_per_batch = pos_3d.amax(dim=(1, 2)) # Sequence lengths per batch: (B,) if attention_mask is None: seq_lens = torch.full_like(m_per_batch, L) else: seq_lens = attention_mask.eq(1).sum(dim=-1).to(dtype=m_per_batch.dtype, device=m_per_batch.device) rope_deltas = (m_per_batch + 1 - seq_lens).to(dtype=pos_3d.dtype).unsqueeze(1) return pos_3d, rope_deltas def forward( self, input_ids: torch.LongTensor | None = None, tensor_stream: TensorStream | None = None, attention_mask: torch.Tensor | None = None, position_ids: torch.LongTensor | None = None, past_key_values: list[torch.FloatTensor] | None = None, inputs_embeds: torch.FloatTensor | None = None, labels: torch.LongTensor | None = None, use_cache: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, cache_position: torch.LongTensor | None = None, **kwargs, ) -> tuple | CausalLMOutputWithPast: """ Forward pass for conditional generation supporting both standard inputs and TensorStream. Uses our embed_stream approach for multimodal inputs. """ # Don't compute embeddings here - let the model handle it if tensor_stream is not None: input_ids = None if input_ids is None and inputs_embeds is None and tensor_stream is None: raise ValueError("Either input_ids, inputs_embeds, or tensor_stream must be provided.") # Build position ids (MRoPE) if needed and tensor_stream is available # During decode we reuse `self.rope_deltas` computed on the initial forward pass; `rope_delta` captures how far # cached rotary phases have progressed so we can advance `position_ids` without rebuilding the TensorStream. if position_ids is None and tensor_stream is not None: position_ids, self.rope_deltas = self.get_rope_index(input_ids, tensor_stream, attention_mask) elif position_ids is None and input_ids is not None: # For text inputs build position ids and modality tensor position_ids = compute_position_ids_input_ids(input_ids) if cache_position is not None and self.rope_deltas is not None: # Combine the incremental decode step (`cache_position`) with cached offsets so hidden states continue # rotating in lockstep across generation steps. rope_delta = (cache_position[0] + self.rope_deltas).to(input_ids.device) else: rope_delta = 0 if cache_position is not None and not isinstance(rope_delta, int): # otherwise `deltas` is an int `0` batch_size = input_ids.shape[0] rope_delta = rope_delta.repeat_interleave(batch_size // rope_delta.shape[0], dim=0) position_ids = position_ids.add(rope_delta) if tensor_stream is not None: modality_tensor = modality_mask(tensor_stream) else: batch_size, seq_len = input_ids.shape modality_tensor = torch.empty(batch_size, seq_len, device=position_ids.device).fill_(TextType.text.value) outputs = self.model( input_ids=input_ids, tensor_stream=tensor_stream, attention_mask=attention_mask, position_ids=position_ids, modality_tensor=modality_tensor, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=None, ) def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: list[torch.FloatTensor] | None = None, attention_mask: torch.Tensor | None = None, inputs_embeds: torch.FloatTensor | None = None, tensor_stream: TensorStream | None = None, cache_position: torch.LongTensor | None = None, position_ids: torch.LongTensor | None = None, use_cache: bool = True, **kwargs, ) -> dict[str, Any]: """ Prepare inputs for generation, handling TensorStream inputs properly. """ # Call parent preparation model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, position_ids=position_ids, use_cache=use_cache, **kwargs, ) # Handle TensorStream for first forward pass only if tensor_stream is not None and (cache_position is None or cache_position[0] == 0): model_inputs["tensor_stream"] = tensor_stream # Let forward rebuild position_ids using cached deltas during decode model_inputs["position_ids"] = None # Drop tensor_stream after step 0 if cache_position is not None and cache_position[0] != 0: model_inputs["tensor_stream"] = None return model_inputs def can_generate(self) -> bool: return True __all__ = [ "IsaacConfig", "IsaacModel", "IsaacForConditionalGeneration", "IsaacProcessor", ]